There are Many Totally Convex Functions
Journal of convex analysis, Tome 13 (2006) no. 3, pp. 623-632
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $K$ be a convex subset of a normed linear space and let $R^1$ denote the real line. We show that there are many (in the sense of Baire category) strictly convex and totally convex functions $f \colon K \to R^1$. It is known that the existence of such functions is crucial in numerous optimization algorithms.
Classification :
46N10, 52A41, 54E50, 54E52
Mots-clés : Complete metric space, essentially strictly convex function, generic property, strictly convex function, totally convex function
Mots-clés : Complete metric space, essentially strictly convex function, generic property, strictly convex function, totally convex function
@article{JCA_2006_13_3_JCA_2006_13_3_a8,
author = {D. Butnariu and S. Reich and A. J. Zaslavski},
title = {There are {Many} {Totally} {Convex} {Functions}},
journal = {Journal of convex analysis},
pages = {623--632},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2006},
url = {http://geodesic.mathdoc.fr/item/JCA_2006_13_3_JCA_2006_13_3_a8/}
}
TY - JOUR AU - D. Butnariu AU - S. Reich AU - A. J. Zaslavski TI - There are Many Totally Convex Functions JO - Journal of convex analysis PY - 2006 SP - 623 EP - 632 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2006_13_3_JCA_2006_13_3_a8/ ID - JCA_2006_13_3_JCA_2006_13_3_a8 ER -
D. Butnariu; S. Reich; A. J. Zaslavski. There are Many Totally Convex Functions. Journal of convex analysis, Tome 13 (2006) no. 3, pp. 623-632. http://geodesic.mathdoc.fr/item/JCA_2006_13_3_JCA_2006_13_3_a8/