Global Maximum of a Convex Function: Necessary and Sufficient Conditions
Journal of convex analysis, Tome 13 (2006) no. 3, pp. 687-694
Voir la notice de l'article provenant de la source Heldermann Verlag
We prove that an extended-real-valued lower semi-continuous convex function Φ defined on a reflexive Banach space X achieves its supremum on every nonempty bounded and closed convex set of its effective domain Dom Φ, if and only if the restriction of Φ to Dom Φ is sequentially continuous with respect to the weak topology on the underlying space X.
Mots-clés :
Global maximum of a convex function, optimality conditions
@article{JCA_2006_13_3_JCA_2006_13_3_a11,
author = {E. Ernst and M. Th\'era},
title = {Global {Maximum} of a {Convex} {Function:} {Necessary} and {Sufficient} {Conditions}},
journal = {Journal of convex analysis},
pages = {687--694},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2006},
url = {http://geodesic.mathdoc.fr/item/JCA_2006_13_3_JCA_2006_13_3_a11/}
}
TY - JOUR AU - E. Ernst AU - M. Théra TI - Global Maximum of a Convex Function: Necessary and Sufficient Conditions JO - Journal of convex analysis PY - 2006 SP - 687 EP - 694 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2006_13_3_JCA_2006_13_3_a11/ ID - JCA_2006_13_3_JCA_2006_13_3_a11 ER -
E. Ernst; M. Théra. Global Maximum of a Convex Function: Necessary and Sufficient Conditions. Journal of convex analysis, Tome 13 (2006) no. 3, pp. 687-694. http://geodesic.mathdoc.fr/item/JCA_2006_13_3_JCA_2006_13_3_a11/