Strongly Nonlinear Elliptic Unilateral Problems without Sign Condition and L1 Data
Journal of convex analysis, Tome 13 (2006) no. 1, pp. 135-149
Voir la notice de l'article provenant de la source Heldermann Verlag
We prove the existence of solutions of unilateral problems involving nonlinear operators of the form $$Au + H(x, u, \nabla u) = f $$ where $A$ is a Leray Lions operator from $W_0^{1, p}(\Omega)$ into its dual $W^{-1, p'}(\Omega)$ and $H(x, u, \nabla u)$ is a nonlinearity which satisfies the following growth condition $|H(x, s, \xi)| \leq \gamma(x)+g(s) |\xi|^p$ with $\gamma\in L^1(\Omega)$ and $g\in L^1({\mathbb R})$, and without assuming any sign condition on $H(x, s, \xi)$. The right hand side $f$ belongs to $L^1(\Omega)$.
Classification :
35J25, 35J60, 35J65
Mots-clés : Sobolev spaces, strongly nonlinear inequality, truncations, unilateral problems
Mots-clés : Sobolev spaces, strongly nonlinear inequality, truncations, unilateral problems
@article{JCA_2006_13_1_JCA_2006_13_1_a8,
author = {L. Aharouch and Y. Akdim},
title = {Strongly {Nonlinear} {Elliptic} {Unilateral} {Problems} without {Sign} {Condition} and {L\protect\textsuperscript{1}} {Data}},
journal = {Journal of convex analysis},
pages = {135--149},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2006},
url = {http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a8/}
}
TY - JOUR AU - L. Aharouch AU - Y. Akdim TI - Strongly Nonlinear Elliptic Unilateral Problems without Sign Condition and L1 Data JO - Journal of convex analysis PY - 2006 SP - 135 EP - 149 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a8/ ID - JCA_2006_13_1_JCA_2006_13_1_a8 ER -
%0 Journal Article %A L. Aharouch %A Y. Akdim %T Strongly Nonlinear Elliptic Unilateral Problems without Sign Condition and L1 Data %J Journal of convex analysis %D 2006 %P 135-149 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a8/ %F JCA_2006_13_1_JCA_2006_13_1_a8
L. Aharouch; Y. Akdim. Strongly Nonlinear Elliptic Unilateral Problems without Sign Condition and L1 Data. Journal of convex analysis, Tome 13 (2006) no. 1, pp. 135-149. http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a8/