From Linear to Convex Systems: Consistency, Farkas' Lemma and Applications
Journal of convex analysis, Tome 13 (2006) no. 1, pp. 113-133
Voir la notice de l'article provenant de la source Heldermann Verlag
This paper analyzes inequality systems with an arbitrary number of proper lower semicontinuous convex constraint functions and a closed convex constraint subset of a locally convex topological vector space. More in detail, starting from well-known results on linear systems (with no constraint set), the paper reviews and completes previous works on the above class of convex systems, providing consistency theorems, two new versions of Farkas' lemma, and optimality conditions in convex optimization. A new closed cone constraint qualification is proposed. Suitable counterparts of these results for cone-convex systems are also given.
@article{JCA_2006_13_1_JCA_2006_13_1_a7,
author = {N. Dinh and M. A. Goberna and M. A. L\'opez},
title = {From {Linear} to {Convex} {Systems:} {Consistency,} {Farkas'} {Lemma} and {Applications}},
journal = {Journal of convex analysis},
pages = {113--133},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2006},
url = {http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a7/}
}
TY - JOUR AU - N. Dinh AU - M. A. Goberna AU - M. A. López TI - From Linear to Convex Systems: Consistency, Farkas' Lemma and Applications JO - Journal of convex analysis PY - 2006 SP - 113 EP - 133 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a7/ ID - JCA_2006_13_1_JCA_2006_13_1_a7 ER -
%0 Journal Article %A N. Dinh %A M. A. Goberna %A M. A. López %T From Linear to Convex Systems: Consistency, Farkas' Lemma and Applications %J Journal of convex analysis %D 2006 %P 113-133 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a7/ %F JCA_2006_13_1_JCA_2006_13_1_a7
N. Dinh; M. A. Goberna; M. A. López. From Linear to Convex Systems: Consistency, Farkas' Lemma and Applications. Journal of convex analysis, Tome 13 (2006) no. 1, pp. 113-133. http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a7/