Minmax Convex Pairs
Journal of convex analysis, Tome 13 (2006) no. 1, pp. 101-111.

Voir la notice de l'article provenant de la source Heldermann Verlag

This paper gives some general criteria for recognizing minmax convex pairs, i.e. \textit{pairs} $(X,Y)$ of \textit{convex} subsets of a Hilbert space for which the bilinear \textit{minmax} equality $\mathop{\rm inf\vphantom{sup}} _{x\in X}\sup_{y\in Y}\langle x,y\rangle =\sup_{y\in Y}\mathop{\rm inf\vphantom{sup}}_{x\in X}\langle x,y\rangle$ holds. Based on new notions of \textit{normality}, \textit{consistency}, \textit{closure feasibility} and \textit{boundary negligibility} of pairs of convex sets, such criteria yield new minmax equalities besides the old ones. Included are the celebrated Classical Minmax Theorem (von Neumann 1928, Kneser 1952) for bounded, closed convex sets, Fenchel's Minmax Theorem for polyhedral convex sets (Fenchel 1951), the Fenchel Minmax Theorem for strongly feasible pairs of convex sets [J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization - Theory and Examples, Springer-Verlag, New York 2000] and new minmax theorems (for locally compact sets, for polar sets, \dots). In the last section minmax convex pairs are used to characterize bounded, closed convex sets. Further investigation on minmax convex pairs relatively to closed hyperplanes and on attainment of extrema in their associated bilinear minmax equalities are left to subsequent papers.
Mots-clés : Minmax convex pairs, Hilbert space, bilinear minmax equality, normality, consistency, closure feasibility, bounded closed convex sets
@article{JCA_2006_13_1_JCA_2006_13_1_a6,
     author = {G. H. Greco},
     title = {Minmax {Convex} {Pairs}},
     journal = {Journal of convex analysis},
     pages = {101--111},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a6/}
}
TY  - JOUR
AU  - G. H. Greco
TI  - Minmax Convex Pairs
JO  - Journal of convex analysis
PY  - 2006
SP  - 101
EP  - 111
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a6/
ID  - JCA_2006_13_1_JCA_2006_13_1_a6
ER  - 
%0 Journal Article
%A G. H. Greco
%T Minmax Convex Pairs
%J Journal of convex analysis
%D 2006
%P 101-111
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a6/
%F JCA_2006_13_1_JCA_2006_13_1_a6
G. H. Greco. Minmax Convex Pairs. Journal of convex analysis, Tome 13 (2006) no. 1, pp. 101-111. http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a6/