Fatou's Lemma for Multifunctions with Unbounded Values in a Dual Space
Journal of convex analysis, Tome 12 (2005) no. 2, pp. 383-395
Cet article a éte moissonné depuis la source Heldermann Verlag
A version of Fatou's lemma for multifunctions with unbounded values in infinite dimensions is presented. It generalizes both the recent Fatou-type results for Gelfand integrable functions of B. Cornet and V. F. Martins da Rocha ["Fatou's lemma for unbounded Gelfand integrable mappings", preprint 109, CERMSEM, Université Paris I (2002)] and, in the case of finite dimensions, the finite-dimensional version of the unifying multivalued Fatou-type result of E. J. Balder and C. Hess [Math. Oper. Res. 20 (1995) 175--188].
Classification :
29B20, 28A20
Mots-clés : Fatou's lemma in several dimensions, Gelfand integral, Young measure, asymptotic cone
Mots-clés : Fatou's lemma in several dimensions, Gelfand integral, Young measure, asymptotic cone
@article{JCA_2005_12_2_JCA_2005_12_2_a8,
author = {E. J. Balder and A. R. Sambucini},
title = {Fatou's {Lemma} for {Multifunctions} with {Unbounded} {Values} in a {Dual} {Space}},
journal = {Journal of convex analysis},
pages = {383--395},
year = {2005},
volume = {12},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a8/}
}
TY - JOUR AU - E. J. Balder AU - A. R. Sambucini TI - Fatou's Lemma for Multifunctions with Unbounded Values in a Dual Space JO - Journal of convex analysis PY - 2005 SP - 383 EP - 395 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a8/ ID - JCA_2005_12_2_JCA_2005_12_2_a8 ER -
E. J. Balder; A. R. Sambucini. Fatou's Lemma for Multifunctions with Unbounded Values in a Dual Space. Journal of convex analysis, Tome 12 (2005) no. 2, pp. 383-395. http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a8/