Filling the Gap between Lower-C1 and Lower-C2 Functions
Journal of convex analysis, Tome 12 (2005) no. 2, pp. 315-329.

Voir la notice de l'article provenant de la source Heldermann Verlag

The classes of lower-$C^{1,\alpha}$ functions ($0\alpha\leq 1$), that is, functions locally representable as a maximum of a compactly parametrized family of continuously differentiable functions with $\alpha$-H\"{o}lder derivative, are hereby introduced. These classes form a strictly decreasing sequence from the larger class of lower-$C^1$ towards the smaller class of lower-$C^2$ functions, and can be analogously characterized via perturbed convex inequalities or via appropriate generalized monotonicity properties of their subdifferentials. Several examples are provided and a complete classification is given.
Classification : 26B25, 49J52, 47H05
Mots-clés : Maximum function, lower-$C^{1,\alpha}$ function, $\alpha$-weakly convex function, $\alpha$-hypomonotone operator
@article{JCA_2005_12_2_JCA_2005_12_2_a4,
     author = {A. Daniilidis and J. Malick},
     title = {Filling the {Gap} between {Lower-C\protect\textsuperscript{1}} and {Lower-C\protect\textsuperscript{2}} {Functions}},
     journal = {Journal of convex analysis},
     pages = {315--329},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a4/}
}
TY  - JOUR
AU  - A. Daniilidis
AU  - J. Malick
TI  - Filling the Gap between Lower-C1 and Lower-C2 Functions
JO  - Journal of convex analysis
PY  - 2005
SP  - 315
EP  - 329
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a4/
ID  - JCA_2005_12_2_JCA_2005_12_2_a4
ER  - 
%0 Journal Article
%A A. Daniilidis
%A J. Malick
%T Filling the Gap between Lower-C1 and Lower-C2 Functions
%J Journal of convex analysis
%D 2005
%P 315-329
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a4/
%F JCA_2005_12_2_JCA_2005_12_2_a4
A. Daniilidis; J. Malick. Filling the Gap between Lower-C1 and Lower-C2 Functions. Journal of convex analysis, Tome 12 (2005) no. 2, pp. 315-329. http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a4/