Filling the Gap between Lower-C1 and Lower-C2 Functions
Journal of convex analysis, Tome 12 (2005) no. 2, pp. 315-329
Voir la notice de l'article provenant de la source Heldermann Verlag
The classes of lower-$C^{1,\alpha}$ functions ($0\alpha\leq 1$), that is, functions locally representable as a maximum of a compactly parametrized family of continuously differentiable functions with $\alpha$-H\"{o}lder derivative, are hereby introduced. These classes form a strictly decreasing sequence from the larger class of lower-$C^1$ towards the smaller class of lower-$C^2$ functions, and can be analogously characterized via perturbed convex inequalities or via appropriate generalized monotonicity properties of their subdifferentials. Several examples are provided and a complete classification is given.
Classification :
26B25, 49J52, 47H05
Mots-clés : Maximum function, lower-$C^{1,\alpha}$ function, $\alpha$-weakly convex function, $\alpha$-hypomonotone operator
Mots-clés : Maximum function, lower-$C^{1,\alpha}$ function, $\alpha$-weakly convex function, $\alpha$-hypomonotone operator
@article{JCA_2005_12_2_JCA_2005_12_2_a4,
author = {A. Daniilidis and J. Malick},
title = {Filling the {Gap} between {Lower-C\protect\textsuperscript{1}} and {Lower-C\protect\textsuperscript{2}} {Functions}},
journal = {Journal of convex analysis},
pages = {315--329},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2005},
url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a4/}
}
TY - JOUR AU - A. Daniilidis AU - J. Malick TI - Filling the Gap between Lower-C1 and Lower-C2 Functions JO - Journal of convex analysis PY - 2005 SP - 315 EP - 329 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a4/ ID - JCA_2005_12_2_JCA_2005_12_2_a4 ER -
A. Daniilidis; J. Malick. Filling the Gap between Lower-C1 and Lower-C2 Functions. Journal of convex analysis, Tome 12 (2005) no. 2, pp. 315-329. http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a4/