Conditional and Relative Weak Compactness in Vector-Valued Function Spaces
Journal of convex analysis, Tome 12 (2005) no. 2, pp. 447-463
Cet article a éte moissonné depuis la source Heldermann Verlag
\newcommand{\norm}{\vert\vert} Let $\,E\,$ be an ideal of $\,L^{\rm o}\,$ over a $\,\sigma$-finite measure space $\,(\Omega, \Sigma, \mu)$, and let $\,(X, \norm \cdot \norm_X)\,$ be a real Banach space. Let $\,E(X)\,$ be a subspace of the space $\,L^{\rm o}(X)\,$ of $\,\mu$-equivalence classes of all strongly $\,\Sigma$-measurable functions $\,f:\; \Omega\longrightarrow X\,$ and consisting of all those $\,f\in L^{\rm o}(X)\,$ for which the scalar function $\,\norm f(\cdot) \norm_X\,$ belongs to $\,E$. Let $\,E(X)_n^{\sim}\,$ stand for the order continuous dual of $\,E(X)$. In this paper we characterize both conditionally $\,\sigma(E(X),I)$-compact and relatively $\,\sigma(E(X), I)$-sequentially compact subsets of $\,E(X)\,$ whenever $\,I\,$ is an ideal of $\,E(X)_n^{\sim}$. As an application, we obtain a characterization of almost reflexivity and reflexivity of a Banach space $\,X\,$ in terms of conditionally $\,\sigma(E(X), I)$-compact and relatively $\,\sigma(E(X), I)$-sequentially compact subsets of $\,E(X)$.
Classification :
46E40, 46A50, 46A20, 46A25
Mots-clés : Vector-valued function spaces, Koethe-Bochner spaces, conditional weak compactness, weak sequential compactness, weak compactness, weak sequential completeness, almost reflexivity, reflexivity, absolute weak topologies
Mots-clés : Vector-valued function spaces, Koethe-Bochner spaces, conditional weak compactness, weak sequential compactness, weak compactness, weak sequential completeness, almost reflexivity, reflexivity, absolute weak topologies
@article{JCA_2005_12_2_JCA_2005_12_2_a13,
author = {M. Nowak},
title = {Conditional and {Relative} {Weak} {Compactness} in {Vector-Valued} {Function} {Spaces}},
journal = {Journal of convex analysis},
pages = {447--463},
year = {2005},
volume = {12},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a13/}
}
M. Nowak. Conditional and Relative Weak Compactness in Vector-Valued Function Spaces. Journal of convex analysis, Tome 12 (2005) no. 2, pp. 447-463. http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a13/