On Monotone Operators and Forms
Journal of convex analysis, Tome 12 (2005) no. 2, pp. 417-429.

Voir la notice de l'article provenant de la source Heldermann Verlag

Consider a set-valued operator mapping points of a real Banach space into convex and weak* closed subsets of the dual space. It is shown that such operators can be investigated via the notion of a form. In particular, continuity, monotonicity, maximal monotonicity, and coerciveness are considered. Moreover, a calculus of forms is derived. Having established the above connections, a probably new sum theorem in nonreflexive Banach spaces is proved, and a Browder-type theorem for forms is given.
Classification : 47H05
Mots-clés : Monotone operators, maximal monotone operators, representation, Browder theorem, nonreflexive sum theorem, bifunctions
@article{JCA_2005_12_2_JCA_2005_12_2_a11,
     author = {K. Groh},
     title = {On {Monotone} {Operators} and {Forms}},
     journal = {Journal of convex analysis},
     pages = {417--429},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a11/}
}
TY  - JOUR
AU  - K. Groh
TI  - On Monotone Operators and Forms
JO  - Journal of convex analysis
PY  - 2005
SP  - 417
EP  - 429
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a11/
ID  - JCA_2005_12_2_JCA_2005_12_2_a11
ER  - 
%0 Journal Article
%A K. Groh
%T On Monotone Operators and Forms
%J Journal of convex analysis
%D 2005
%P 417-429
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a11/
%F JCA_2005_12_2_JCA_2005_12_2_a11
K. Groh. On Monotone Operators and Forms. Journal of convex analysis, Tome 12 (2005) no. 2, pp. 417-429. http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a11/