Subdifferential Representation of Convex Functions: Refinements and Applications
Journal of convex analysis, Tome 12 (2005) no. 2, pp. 255-265
Cet article a éte moissonné depuis la source Heldermann Verlag
Every lower semicontinuous convex function can be represented through its subdifferential by means of an "integration" formula introduced by R. T. Rockafellar [Pacific J. Math. 33 (1970) 209--216]. We show that in Banach spaces with the Radon-Nikodym property this formula can be significantly refined under a standard coercivity assumption. This yields an interesting application to the convexification of lower semicontinuous functions.
Classification :
52A41, 46B22, 26E25
Mots-clés : Convex function, subdifferential, epi-pointed function, cusco mapping, strongly exposed point
Mots-clés : Convex function, subdifferential, epi-pointed function, cusco mapping, strongly exposed point
@article{JCA_2005_12_2_JCA_2005_12_2_a0,
author = {J. Benoist and A. Daniilidis},
title = {Subdifferential {Representation} of {Convex} {Functions:} {Refinements} and {Applications}},
journal = {Journal of convex analysis},
pages = {255--265},
year = {2005},
volume = {12},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a0/}
}
TY - JOUR AU - J. Benoist AU - A. Daniilidis TI - Subdifferential Representation of Convex Functions: Refinements and Applications JO - Journal of convex analysis PY - 2005 SP - 255 EP - 265 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a0/ ID - JCA_2005_12_2_JCA_2005_12_2_a0 ER -
J. Benoist; A. Daniilidis. Subdifferential Representation of Convex Functions: Refinements and Applications. Journal of convex analysis, Tome 12 (2005) no. 2, pp. 255-265. http://geodesic.mathdoc.fr/item/JCA_2005_12_2_JCA_2005_12_2_a0/