On the Relaxation of a Class of Functionals Defined on Riemannian Distances
Journal of convex analysis, Tome 12 (2005) no. 1, pp. 113-13
Cet article a éte moissonné depuis la source Heldermann Verlag
We study the relaxation of a class of functionals defined on distances induced by isotropic Riemannian metrics on an open subset of RN. We prove that isotropic Riemannian metrics are dense in Finsler ones and we show that the relaxed functionals admit a specific integral representation.
Mots-clés :
Riemannian and Finsler metrics, relaxation, Gamma convergence
@article{JCA_2005_12_1_JCA_2005_12_1_a6,
author = {A. Davini},
title = {On the {Relaxation} of a {Class} of {Functionals} {Defined} on {Riemannian} {Distances}},
journal = {Journal of convex analysis},
pages = {113--13},
year = {2005},
volume = {12},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a6/}
}
A. Davini. On the Relaxation of a Class of Functionals Defined on Riemannian Distances. Journal of convex analysis, Tome 12 (2005) no. 1, pp. 113-13. http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a6/