On the Relaxation of a Class of Functionals Defined on Riemannian Distances
Journal of convex analysis, Tome 12 (2005) no. 1, pp. 113-13.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study the relaxation of a class of functionals defined on distances induced by isotropic Riemannian metrics on an open subset of RN. We prove that isotropic Riemannian metrics are dense in Finsler ones and we show that the relaxed functionals admit a specific integral representation.
Mots-clés : Riemannian and Finsler metrics, relaxation, Gamma convergence
@article{JCA_2005_12_1_JCA_2005_12_1_a6,
     author = {A. Davini},
     title = {On the {Relaxation} of a {Class} of {Functionals} {Defined} on {Riemannian} {Distances}},
     journal = {Journal of convex analysis},
     pages = {113--13},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a6/}
}
TY  - JOUR
AU  - A. Davini
TI  - On the Relaxation of a Class of Functionals Defined on Riemannian Distances
JO  - Journal of convex analysis
PY  - 2005
SP  - 113
EP  - 13
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a6/
ID  - JCA_2005_12_1_JCA_2005_12_1_a6
ER  - 
%0 Journal Article
%A A. Davini
%T On the Relaxation of a Class of Functionals Defined on Riemannian Distances
%J Journal of convex analysis
%D 2005
%P 113-13
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a6/
%F JCA_2005_12_1_JCA_2005_12_1_a6
A. Davini. On the Relaxation of a Class of Functionals Defined on Riemannian Distances. Journal of convex analysis, Tome 12 (2005) no. 1, pp. 113-13. http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a6/