Relating U-Lagrangians to Second-Order Epi-Derivatives and Proximal Tracks
Journal of convex analysis, Tome 12 (2005) no. 1, pp. 81-93
Voir la notice de l'article provenant de la source Heldermann Verlag
We make use of VU-space decomposition theory to connect three minimization-oriented objects. These objects are U-Lagrangians obtained from minimizing a function over V-space, proximal points depending on minimization over Rn = U + V, and epi-derivatives determined by lower limits associated with epigraphs. We relate second-order epi-derivatives of a function to the Hessian of its associated U -Lagrangian. We also show that the function's proximal points are on a trajectory determined by certain V-space minimizers.
Classification :
90C31, 49J52, 65K10, 49J53
Mots-clés : U-Lagrangian, proximal point, second-order epi-derivatives
Mots-clés : U-Lagrangian, proximal point, second-order epi-derivatives
@article{JCA_2005_12_1_JCA_2005_12_1_a4,
author = {R. Mifflin and C. Sagastizabal},
title = {Relating {\protect\emph{U}-Lagrangians} to {Second-Order} {Epi-Derivatives} and {Proximal} {Tracks}},
journal = {Journal of convex analysis},
pages = {81--93},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2005},
url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a4/}
}
TY - JOUR AU - R. Mifflin AU - C. Sagastizabal TI - Relating U-Lagrangians to Second-Order Epi-Derivatives and Proximal Tracks JO - Journal of convex analysis PY - 2005 SP - 81 EP - 93 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a4/ ID - JCA_2005_12_1_JCA_2005_12_1_a4 ER -
R. Mifflin; C. Sagastizabal. Relating U-Lagrangians to Second-Order Epi-Derivatives and Proximal Tracks. Journal of convex analysis, Tome 12 (2005) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a4/