Global Linear Convergence of an Augmented Lagrangian Algorithm to Solve Convex Quadratic Optimization Problems
Journal of convex analysis, Tome 12 (2005) no. 1, pp. 45-69.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider an augmented Lagrangian algorithm for minimizing a convex quadratic function subject to linear inequality constraints. Linear optimization is an important particular instance of this problem. We show that, provided the augmentation parameter is large enough, the constraint value converges globally linearly to zero. This property is viewed as a consequence of the proximal interpretation of the algorithm and of the global radial Lipschitz continuity of the reciprocal of the dual function subdifferential. This Lipschitz property is itself obtained by means of a lemma of general interest, which compares the distances from a point in the positive orthant to an affine space, on the one hand, and to the polyhedron given by the intersection of this affine space and the positive orthant, on the other hand.
Classification : 49M29, 65K05, 90C05, 90C06, 90C20
Mots-clés : Augmented Lagrangian, convex quadratic optimization, distance to a polyhedron, error bound, global linear convergence, iterative complexity, linear constraints, proximal algorithm
@article{JCA_2005_12_1_JCA_2005_12_1_a2,
     author = {F. Delbos and J. C. Gilbert},
     title = {Global {Linear} {Convergence} of an {Augmented} {Lagrangian} {Algorithm} to {Solve} {Convex} {Quadratic} {Optimization} {Problems}},
     journal = {Journal of convex analysis},
     pages = {45--69},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a2/}
}
TY  - JOUR
AU  - F. Delbos
AU  - J. C. Gilbert
TI  - Global Linear Convergence of an Augmented Lagrangian Algorithm to Solve Convex Quadratic Optimization Problems
JO  - Journal of convex analysis
PY  - 2005
SP  - 45
EP  - 69
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a2/
ID  - JCA_2005_12_1_JCA_2005_12_1_a2
ER  - 
%0 Journal Article
%A F. Delbos
%A J. C. Gilbert
%T Global Linear Convergence of an Augmented Lagrangian Algorithm to Solve Convex Quadratic Optimization Problems
%J Journal of convex analysis
%D 2005
%P 45-69
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a2/
%F JCA_2005_12_1_JCA_2005_12_1_a2
F. Delbos; J. C. Gilbert. Global Linear Convergence of an Augmented Lagrangian Algorithm to Solve Convex Quadratic Optimization Problems. Journal of convex analysis, Tome 12 (2005) no. 1, pp. 45-69. http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a2/