A Comparison Principle and the Lipschitz Continuity for Minimizers
Journal of convex analysis, Tome 12 (2005) no. 1, pp. 197-212.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give some conditions that ensure the validity of a Comparison Principle for the minimizers of integral functionals, without assuming the validity of the Euler-Lagrange equation. We deduce a weak Maximum Principle for (possibly) degenerate elliptic equations and, together with a generalization of the Bounded Slope Condition, a result on the Lipschitz continuity of minimizers.
Classification : 35A15, 35B05 35B50, 35J20, 46B99
Mots-clés : Comparison Principle, Maximum Principle, variational equation, Euler-Lagrange equation, elliptic equation, Bounded Slope Condition, regularity of minimizers
@article{JCA_2005_12_1_JCA_2005_12_1_a13,
     author = {C. Mariconda and G. Treu},
     title = {A {Comparison} {Principle} and the {Lipschitz} {Continuity} for {Minimizers}},
     journal = {Journal of convex analysis},
     pages = {197--212},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a13/}
}
TY  - JOUR
AU  - C. Mariconda
AU  - G. Treu
TI  - A Comparison Principle and the Lipschitz Continuity for Minimizers
JO  - Journal of convex analysis
PY  - 2005
SP  - 197
EP  - 212
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a13/
ID  - JCA_2005_12_1_JCA_2005_12_1_a13
ER  - 
%0 Journal Article
%A C. Mariconda
%A G. Treu
%T A Comparison Principle and the Lipschitz Continuity for Minimizers
%J Journal of convex analysis
%D 2005
%P 197-212
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a13/
%F JCA_2005_12_1_JCA_2005_12_1_a13
C. Mariconda; G. Treu. A Comparison Principle and the Lipschitz Continuity for Minimizers. Journal of convex analysis, Tome 12 (2005) no. 1, pp. 197-212. http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a13/