A Comparison Principle and the Lipschitz Continuity for Minimizers
Journal of convex analysis, Tome 12 (2005) no. 1, pp. 197-212
Voir la notice de l'article provenant de la source Heldermann Verlag
We give some conditions that ensure the validity of a Comparison Principle for the minimizers of integral functionals, without assuming the validity of the Euler-Lagrange equation. We deduce a weak Maximum Principle for (possibly) degenerate elliptic equations and, together with a generalization of the Bounded Slope Condition, a result on the Lipschitz continuity of minimizers.
Classification :
35A15, 35B05 35B50, 35J20, 46B99
Mots-clés : Comparison Principle, Maximum Principle, variational equation, Euler-Lagrange equation, elliptic equation, Bounded Slope Condition, regularity of minimizers
Mots-clés : Comparison Principle, Maximum Principle, variational equation, Euler-Lagrange equation, elliptic equation, Bounded Slope Condition, regularity of minimizers
@article{JCA_2005_12_1_JCA_2005_12_1_a13,
author = {C. Mariconda and G. Treu},
title = {A {Comparison} {Principle} and the {Lipschitz} {Continuity} for {Minimizers}},
journal = {Journal of convex analysis},
pages = {197--212},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2005},
url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a13/}
}
TY - JOUR AU - C. Mariconda AU - G. Treu TI - A Comparison Principle and the Lipschitz Continuity for Minimizers JO - Journal of convex analysis PY - 2005 SP - 197 EP - 212 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a13/ ID - JCA_2005_12_1_JCA_2005_12_1_a13 ER -
C. Mariconda; G. Treu. A Comparison Principle and the Lipschitz Continuity for Minimizers. Journal of convex analysis, Tome 12 (2005) no. 1, pp. 197-212. http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a13/