The Hamilton-Jacobi Equation of Minimal Time Control
Journal of convex analysis, Tome 11 (2004) no. 2, pp. 413-436
Voir la notice de l'article provenant de la source Heldermann Verlag
We study the solutions of the Hamilton-Jacobi equation that arise in connection with minimal time control, in a new global framework. These solutions, for which we establish existence using the minimal time function as a function of two variables, turn out to be closely related to time-geodesic trajectories.
Mots-clés :
minimal time function, viscosity solutions, geodesic trajectories, proximal analysis, monotonicity of trajectories, nonsmooth analysis
@article{JCA_2004_11_2_JCA_2004_11_2_a9,
author = {F. H. Clarke and C. Nour},
title = {The {Hamilton-Jacobi} {Equation} of {Minimal} {Time} {Control}},
journal = {Journal of convex analysis},
pages = {413--436},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2004},
url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a9/}
}
F. H. Clarke; C. Nour. The Hamilton-Jacobi Equation of Minimal Time Control. Journal of convex analysis, Tome 11 (2004) no. 2, pp. 413-436. http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a9/