On the Exact Value of Packing Spheres in a Class of Orlicz Function Spaces
Journal of convex analysis, Tome 11 (2004) no. 2, pp. 391-4.

Voir la notice de l'article provenant de la source Heldermann Verlag

Main result: the packing constants of Orlicz function spaces $L^{(\Phi)}[0,1]$ and $L^{\Phi}[0,1]$ with Luxemburg and Orlicz norm have the exact value. \medskip (i) If $F_\Phi(t)=t\varphi(t)/\Phi(t)$ is decreasing, $1$ then $$ P(L^{(\Phi)}[0,1])=P(L^{\Phi}[0,1])=\frac{2^{1/C_\Phi}}{2+2^{1/C_\Phi}}; $$ (ii) If $F_\Phi(t)$ is increasing, $C_\Phi> 2,$ then $$ P(L^{(\Phi)}[0,1])=P(L^{\Phi}[0,1])=\frac{1}{1+2^{1/C_\Phi}}, $$ where $C_\Phi=\lim\limits_{t\rightarrow\infty} F_\Phi(t)$.
Mots-clés : Orlicz space, packing constants, Kottman constants
@article{JCA_2004_11_2_JCA_2004_11_2_a7,
     author = {Y. Q. Yan},
     title = {On the {Exact} {Value} of {Packing} {Spheres} in a {Class} of {Orlicz} {Function} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {391--4},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a7/}
}
TY  - JOUR
AU  - Y. Q. Yan
TI  - On the Exact Value of Packing Spheres in a Class of Orlicz Function Spaces
JO  - Journal of convex analysis
PY  - 2004
SP  - 391
EP  - 4
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a7/
ID  - JCA_2004_11_2_JCA_2004_11_2_a7
ER  - 
%0 Journal Article
%A Y. Q. Yan
%T On the Exact Value of Packing Spheres in a Class of Orlicz Function Spaces
%J Journal of convex analysis
%D 2004
%P 391-4
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a7/
%F JCA_2004_11_2_JCA_2004_11_2_a7
Y. Q. Yan. On the Exact Value of Packing Spheres in a Class of Orlicz Function Spaces. Journal of convex analysis, Tome 11 (2004) no. 2, pp. 391-4. http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a7/