On the Exact Value of Packing Spheres in a Class of Orlicz Function Spaces
Journal of convex analysis, Tome 11 (2004) no. 2, pp. 391-4
Cet article a éte moissonné depuis la source Heldermann Verlag
Main result: the packing constants of Orlicz function spaces $L^{(\Phi)}[0,1]$ and $L^{\Phi}[0,1]$ with Luxemburg and Orlicz norm have the exact value. \medskip (i) If $F_\Phi(t)=t\varphi(t)/\Phi(t)$ is decreasing, $1$ then $$ P(L^{(\Phi)}[0,1])=P(L^{\Phi}[0,1])=\frac{2^{1/C_\Phi}}{2+2^{1/C_\Phi}}; $$ (ii) If $F_\Phi(t)$ is increasing, $C_\Phi> 2,$ then $$ P(L^{(\Phi)}[0,1])=P(L^{\Phi}[0,1])=\frac{1}{1+2^{1/C_\Phi}}, $$ where $C_\Phi=\lim\limits_{t\rightarrow\infty} F_\Phi(t)$.
Mots-clés :
Orlicz space, packing constants, Kottman constants
@article{JCA_2004_11_2_JCA_2004_11_2_a7,
author = {Y. Q. Yan},
title = {On the {Exact} {Value} of {Packing} {Spheres} in a {Class} of {Orlicz} {Function} {Spaces}},
journal = {Journal of convex analysis},
pages = {391--4},
year = {2004},
volume = {11},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a7/}
}
Y. Q. Yan. On the Exact Value of Packing Spheres in a Class of Orlicz Function Spaces. Journal of convex analysis, Tome 11 (2004) no. 2, pp. 391-4. http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a7/