On the Representation Property of Kernels of Quasidifferentials
Journal of convex analysis, Tome 11 (2004) no. 2, pp. 387-39
Cet article a éte moissonné depuis la source Heldermann Verlag
The conjecture that the kernel of each quasidifferential always represents this quasidifferential is proved false in R3.
Mots-clés :
Quasidifferential calculus, minimal pair of compact convex sets
@article{JCA_2004_11_2_JCA_2004_11_2_a6,
author = {J. Grzybowski and R. Urbanski},
title = {On the {Representation} {Property} of {Kernels} of {Quasidifferentials}},
journal = {Journal of convex analysis},
pages = {387--39},
year = {2004},
volume = {11},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a6/}
}
J. Grzybowski; R. Urbanski. On the Representation Property of Kernels of Quasidifferentials. Journal of convex analysis, Tome 11 (2004) no. 2, pp. 387-39. http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a6/