Homogenization of Evolution Problems in a Fiber Reinforced Structure
Journal of convex analysis, Tome 11 (2004) no. 2, pp. 363-385
Cet article a éte moissonné depuis la source Heldermann Verlag
We study the homogenization of parabolic or hyperbolic equations like $$ \rho_\epsilon(x){\partial^n u_\epsilon \over \partial t^n}- div(a_\epsilon(x) \nabla u_\epsilon) =f $$ on $\Omega\times (0, T)$ plus {\sl boundary conditions}, $n \in \{1,2\}$, where the coefficients $a_\epsilon$ and $\rho_\epsilon$ takes values of very different order on an $\epsilon$-periodic subset $T_\epsilon \subset \Omega$ (fibered structure) and elsewhere. We find a non local effective equation deduced from a homogenized system of several equations.
Mots-clés :
homogenization, fiber structures, two-scale convergence, Γ-convergence
@article{JCA_2004_11_2_JCA_2004_11_2_a5,
author = {M. Bellieud},
title = {Homogenization of {Evolution} {Problems} in a {Fiber} {Reinforced} {Structure}},
journal = {Journal of convex analysis},
pages = {363--385},
year = {2004},
volume = {11},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a5/}
}
M. Bellieud. Homogenization of Evolution Problems in a Fiber Reinforced Structure. Journal of convex analysis, Tome 11 (2004) no. 2, pp. 363-385. http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a5/