Homogenization of Evolution Problems in a Fiber Reinforced Structure
Journal of convex analysis, Tome 11 (2004) no. 2, pp. 363-385.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study the homogenization of parabolic or hyperbolic equations like $$ \rho_\epsilon(x){\partial^n u_\epsilon \over \partial t^n}- div(a_\epsilon(x) \nabla u_\epsilon) =f $$ on $\Omega\times (0, T)$ plus {\sl boundary conditions}, $n \in \{1,2\}$, where the coefficients $a_\epsilon$ and $\rho_\epsilon$ takes values of very different order on an $\epsilon$-periodic subset $T_\epsilon \subset \Omega$ (fibered structure) and elsewhere. We find a non local effective equation deduced from a homogenized system of several equations.
Mots-clés : homogenization, fiber structures, two-scale convergence, Γ-convergence
@article{JCA_2004_11_2_JCA_2004_11_2_a5,
     author = {M. Bellieud},
     title = {Homogenization of {Evolution} {Problems} in a {Fiber} {Reinforced} {Structure}},
     journal = {Journal of convex analysis},
     pages = {363--385},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a5/}
}
TY  - JOUR
AU  - M. Bellieud
TI  - Homogenization of Evolution Problems in a Fiber Reinforced Structure
JO  - Journal of convex analysis
PY  - 2004
SP  - 363
EP  - 385
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a5/
ID  - JCA_2004_11_2_JCA_2004_11_2_a5
ER  - 
%0 Journal Article
%A M. Bellieud
%T Homogenization of Evolution Problems in a Fiber Reinforced Structure
%J Journal of convex analysis
%D 2004
%P 363-385
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a5/
%F JCA_2004_11_2_JCA_2004_11_2_a5
M. Bellieud. Homogenization of Evolution Problems in a Fiber Reinforced Structure. Journal of convex analysis, Tome 11 (2004) no. 2, pp. 363-385. http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a5/