Variational Analysis for a Class of Minimal Time Functions in Hilbert Spaces
Journal of convex analysis, Tome 11 (2004) no. 2, pp. 335-361
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\iint{{\hbox{int}\;}} This paper considers the parameterized infinite dimensional optimization problem $$ \hbox{minimize}\quad\bigl\{t\geq 0:\;S \cap\{x+tF\}\not= \emptyset\bigr\}, $$ where $S$ is a nonempty closed subset of a Hilbert space $H$ and $F\subseteq H$ is closed convex satisfying $0\in \iint F$. The optimal value $T(x)$ depends on the parameter $x\in H$, and the (possibly empty) set $S\cap (x+T(x)F)$ of optimal solutions is the ``$F$-projection'' of $x$ into $S$. We first compute proximal and Fr\'echet subgradients of $T(\cdot)$ in terms of normal vectors to level sets, and secondly, in terms of the $F$-projection. Sufficient conditions are also obtained for the differentiability and semiconvexity of $T(\cdot)$, results which extend the known case when $F$ is the unit ball.
@article{JCA_2004_11_2_JCA_2004_11_2_a4,
author = {G. Colombo and P. R. Wolenski},
title = {Variational {Analysis} for a {Class} of {Minimal} {Time} {Functions} in {Hilbert} {Spaces}},
journal = {Journal of convex analysis},
pages = {335--361},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2004},
url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a4/}
}
TY - JOUR AU - G. Colombo AU - P. R. Wolenski TI - Variational Analysis for a Class of Minimal Time Functions in Hilbert Spaces JO - Journal of convex analysis PY - 2004 SP - 335 EP - 361 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a4/ ID - JCA_2004_11_2_JCA_2004_11_2_a4 ER -
%0 Journal Article %A G. Colombo %A P. R. Wolenski %T Variational Analysis for a Class of Minimal Time Functions in Hilbert Spaces %J Journal of convex analysis %D 2004 %P 335-361 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a4/ %F JCA_2004_11_2_JCA_2004_11_2_a4
G. Colombo; P. R. Wolenski. Variational Analysis for a Class of Minimal Time Functions in Hilbert Spaces. Journal of convex analysis, Tome 11 (2004) no. 2, pp. 335-361. http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a4/