Variational Analysis for a Class of Minimal Time Functions in Hilbert Spaces
Journal of convex analysis, Tome 11 (2004) no. 2, pp. 335-361.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\iint{{\hbox{int}\;}} This paper considers the parameterized infinite dimensional optimization problem $$ \hbox{minimize}\quad\bigl\{t\geq 0:\;S \cap\{x+tF\}\not= \emptyset\bigr\}, $$ where $S$ is a nonempty closed subset of a Hilbert space $H$ and $F\subseteq H$ is closed convex satisfying $0\in \iint F$. The optimal value $T(x)$ depends on the parameter $x\in H$, and the (possibly empty) set $S\cap (x+T(x)F)$ of optimal solutions is the ``$F$-projection'' of $x$ into $S$. We first compute proximal and Fr\'echet subgradients of $T(\cdot)$ in terms of normal vectors to level sets, and secondly, in terms of the $F$-projection. Sufficient conditions are also obtained for the differentiability and semiconvexity of $T(\cdot)$, results which extend the known case when $F$ is the unit ball.
@article{JCA_2004_11_2_JCA_2004_11_2_a4,
     author = {G. Colombo and P. R. Wolenski},
     title = {Variational {Analysis} for a {Class} of {Minimal} {Time} {Functions} in {Hilbert} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {335--361},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a4/}
}
TY  - JOUR
AU  - G. Colombo
AU  - P. R. Wolenski
TI  - Variational Analysis for a Class of Minimal Time Functions in Hilbert Spaces
JO  - Journal of convex analysis
PY  - 2004
SP  - 335
EP  - 361
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a4/
ID  - JCA_2004_11_2_JCA_2004_11_2_a4
ER  - 
%0 Journal Article
%A G. Colombo
%A P. R. Wolenski
%T Variational Analysis for a Class of Minimal Time Functions in Hilbert Spaces
%J Journal of convex analysis
%D 2004
%P 335-361
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a4/
%F JCA_2004_11_2_JCA_2004_11_2_a4
G. Colombo; P. R. Wolenski. Variational Analysis for a Class of Minimal Time Functions in Hilbert Spaces. Journal of convex analysis, Tome 11 (2004) no. 2, pp. 335-361. http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a4/