Convergence of Convex Sets with Gradient Constraint
Journal of convex analysis, Tome 11 (2004) no. 2, pp. 285-301
Cet article a éte moissonné depuis la source Heldermann Verlag
\newcommand{\gd}{\nabla} \newcommand{\K}{\mathbb K} \newcommand{\N}{\mathbb N} \newcommand{\R}{\mathbb{R}} \newcommand{\wump}{{\bf W}^{1,p}_0(\Omega)} Given a bounded open subset of $\R^N$, we study the convergence of a sequence $(\K_n)_{n\in\N}$ of closed convex subsets of $\wump$ ($p\in]1,\infty[$) with gradient constraint, to a convex set $\K$, in the Mosco sense. A particular case of the problem studied is when $\K_n=\{v\in \wump: F_n(x,\gd v(x))\le g_n(x)\mbox{ for a.e. $x$ in }\Omega\}$. Some examples of non-convergence are presented. We also present an improvement of a result of existence of a solution of a quasivariational inequality, as an application of this Mosco convergence result.
@article{JCA_2004_11_2_JCA_2004_11_2_a2,
author = {A. Azevedo and L. Santos},
title = {Convergence of {Convex} {Sets} with {Gradient} {Constraint}},
journal = {Journal of convex analysis},
pages = {285--301},
year = {2004},
volume = {11},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a2/}
}
A. Azevedo; L. Santos. Convergence of Convex Sets with Gradient Constraint. Journal of convex analysis, Tome 11 (2004) no. 2, pp. 285-301. http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a2/