Partial and Full Boundary Regularity for Minimizers of Functionals with Nonquadratic Growth
Journal of convex analysis, Tome 11 (2004) no. 2, pp. 437-476
We consider regularity at the boundary for minimizers of variational integrals whose integrands have nonquadratic growth in the gradient. Under relatively mild assumptions on the coefficients we obtain a partial regularity result. For coefficients of a more particular type, namely those satifying a particular splitting condition, we obtain full boundary regularity. The results are new for the situation under consideration. The key ingredients are a new version of the usual Gehring-type lemma, and a careful adaptation of the technique of dimension-reduction to the current setting.
@article{JCA_2004_11_2_JCA_2004_11_2_a10,
author = {F. Duzaar and J. F. Grotowski and M. Kronz},
title = {Partial and {Full} {Boundary} {Regularity} for {Minimizers} of {Functionals} with {Nonquadratic} {Growth}},
journal = {Journal of convex analysis},
pages = {437--476},
year = {2004},
volume = {11},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a10/}
}
TY - JOUR AU - F. Duzaar AU - J. F. Grotowski AU - M. Kronz TI - Partial and Full Boundary Regularity for Minimizers of Functionals with Nonquadratic Growth JO - Journal of convex analysis PY - 2004 SP - 437 EP - 476 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a10/ ID - JCA_2004_11_2_JCA_2004_11_2_a10 ER -
%0 Journal Article %A F. Duzaar %A J. F. Grotowski %A M. Kronz %T Partial and Full Boundary Regularity for Minimizers of Functionals with Nonquadratic Growth %J Journal of convex analysis %D 2004 %P 437-476 %V 11 %N 2 %U http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a10/ %F JCA_2004_11_2_JCA_2004_11_2_a10
F. Duzaar; J. F. Grotowski; M. Kronz. Partial and Full Boundary Regularity for Minimizers of Functionals with Nonquadratic Growth. Journal of convex analysis, Tome 11 (2004) no. 2, pp. 437-476. http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a10/