Pointedness, Connectedness, and Convergence Results in the Space of Closed Convex Cones
Journal of convex analysis, Tome 11 (2004) no. 2, pp. 267-284.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let K(H) denote the collection of all closed convex cones in a finite dimensional real Hilbert space H. Painleve-Kuratowski convergence in this space has been the subject of numerous publications. However, the link between convergence and pointedness has not been explored in its full extent. This note contributes to close this gap. Some results concerning the connected components of K(H) are also considered.
Mots-clés : pointed cone, solid cone, Painleve-Kuratowski convergence, polarity, connectedness
@article{JCA_2004_11_2_JCA_2004_11_2_a1,
     author = {A. Iusem and A. Seeger},
     title = {Pointedness, {Connectedness,} and {Convergence} {Results} in the {Space} of {Closed} {Convex} {Cones}},
     journal = {Journal of convex analysis},
     pages = {267--284},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a1/}
}
TY  - JOUR
AU  - A. Iusem
AU  - A. Seeger
TI  - Pointedness, Connectedness, and Convergence Results in the Space of Closed Convex Cones
JO  - Journal of convex analysis
PY  - 2004
SP  - 267
EP  - 284
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a1/
ID  - JCA_2004_11_2_JCA_2004_11_2_a1
ER  - 
%0 Journal Article
%A A. Iusem
%A A. Seeger
%T Pointedness, Connectedness, and Convergence Results in the Space of Closed Convex Cones
%J Journal of convex analysis
%D 2004
%P 267-284
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a1/
%F JCA_2004_11_2_JCA_2004_11_2_a1
A. Iusem; A. Seeger. Pointedness, Connectedness, and Convergence Results in the Space of Closed Convex Cones. Journal of convex analysis, Tome 11 (2004) no. 2, pp. 267-284. http://geodesic.mathdoc.fr/item/JCA_2004_11_2_JCA_2004_11_2_a1/