On Uniqueness in Evolution Quasivariational Inequalities
Journal of convex analysis, Tome 11 (2004) no. 1, pp. 111-13.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider a rate independent evolution quasivariational inequality in a Hilbert space X with closed convex constraints having nonempty interior. We prove that there exists a unique solution which is Lipschitz dependent on the data, if the dependence of the Minkowski functional on the solution is Lipschitzian with a small constant and if also the gradient of the square of the Minkowski functional is Lipschitz continuous with respect to all variables. We exhibit an example of nonuniqueness if the assumption of Lipschitz continuity is violated by an arbitrarily small degree.
Mots-clés : evolution quasivariational inequality, uniqueness, sweeping process, hysteresis, play operator
@article{JCA_2004_11_1_JCA_2004_11_1_a7,
     author = {M. Brokate and P. Krejci and H. Schnabel},
     title = {On {Uniqueness} in {Evolution} {Quasivariational} {Inequalities}},
     journal = {Journal of convex analysis},
     pages = {111--13},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a7/}
}
TY  - JOUR
AU  - M. Brokate
AU  - P. Krejci
AU  - H. Schnabel
TI  - On Uniqueness in Evolution Quasivariational Inequalities
JO  - Journal of convex analysis
PY  - 2004
SP  - 111
EP  - 13
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a7/
ID  - JCA_2004_11_1_JCA_2004_11_1_a7
ER  - 
%0 Journal Article
%A M. Brokate
%A P. Krejci
%A H. Schnabel
%T On Uniqueness in Evolution Quasivariational Inequalities
%J Journal of convex analysis
%D 2004
%P 111-13
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a7/
%F JCA_2004_11_1_JCA_2004_11_1_a7
M. Brokate; P. Krejci; H. Schnabel. On Uniqueness in Evolution Quasivariational Inequalities. Journal of convex analysis, Tome 11 (2004) no. 1, pp. 111-13. http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a7/