A Local Selection Theorem for Metrically Regular Mappings
Journal of convex analysis, Tome 11 (2004) no. 1, pp. 081-094
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\bx{\bar x} \def\by{\bar y} \def\for{\hskip0.9pt|\hskip0.9pt} \def\lip{\mathop{\rm lip}\nolimits} \def\reg{\mathop{\rm reg}\nolimits} \def\tto{\;{\lower 1pt \hbox{$\rightarrow$}}\kern -12pt \hbox{\raise 2.8pt \hbox{$\rightarrow$}}\;} We prove the following extension of a classical theorem due to Bartle and Graves. Let a set-valued mapping $F:X \tto Y$, where $X$ and $Y$ are Banach spaces, be metrically regular at $\bx$ for $\by$ and with the property that the mapping whose graph is the restriction of the graph of the inverse $F^{-1}$ to a neighborhood of $(\by, \bx)$ is convex and closed valued. Then for any function $G:X\to Y$ with $\lip G(\bx)\cdot \reg F(\bx\for\by)) 1$, the mapping $(F+G)^{-1}$ has a continuous local selection $x(\cdot)$ around $(\by+G(\bx),\bx)$ which is also calm.
Mots-clés :
set-valued mapping, metric regularity, continuous selection, Bartle-Graves theorem
@article{JCA_2004_11_1_JCA_2004_11_1_a5,
author = {A. L. Dontchev},
title = {A {Local} {Selection} {Theorem} for {Metrically} {Regular} {Mappings}},
journal = {Journal of convex analysis},
pages = {081--094},
year = {2004},
volume = {11},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a5/}
}
A. L. Dontchev. A Local Selection Theorem for Metrically Regular Mappings. Journal of convex analysis, Tome 11 (2004) no. 1, pp. 081-094. http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a5/