An Epi-Convergence Result for Bivariate Convex Functions
Journal of convex analysis, Tome 11 (2004) no. 1, pp. 197-208.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove that for a large class of convex and lower semi-continuous biavariate functions defined over RN, epi-convergence in one variable implies epi-convergence in both variables. We also show that for closed-valued and graph-convex mappings with domains with non empty interiors, pointwise convergence implies graph convergence. We provide a number of applications for both results.
@article{JCA_2004_11_1_JCA_2004_11_1_a12,
     author = {Adib Bagh},
     title = {An {Epi-Convergence} {Result} for {Bivariate} {Convex} {Functions}},
     journal = {Journal of convex analysis},
     pages = {197--208},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a12/}
}
TY  - JOUR
AU  - Adib Bagh
TI  - An Epi-Convergence Result for Bivariate Convex Functions
JO  - Journal of convex analysis
PY  - 2004
SP  - 197
EP  - 208
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a12/
ID  - JCA_2004_11_1_JCA_2004_11_1_a12
ER  - 
%0 Journal Article
%A Adib Bagh
%T An Epi-Convergence Result for Bivariate Convex Functions
%J Journal of convex analysis
%D 2004
%P 197-208
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a12/
%F JCA_2004_11_1_JCA_2004_11_1_a12
Adib Bagh. An Epi-Convergence Result for Bivariate Convex Functions. Journal of convex analysis, Tome 11 (2004) no. 1, pp. 197-208. http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a12/