Critical Point Theory for Vector Valued Functions
Journal of convex analysis, Tome 9 (2002) no. 2, pp. 415-428.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider a continuous function defined on a metric space with values in a Banach space endowed with an order cone. In this setting, we provide an extension of min-max techniques, such as the Mountain pass theorem and Ljusternik-Schnirelman theory, without assuming the order cone to have nonempty interior.
Classification : 49J40, 58E05
Mots-clés : Vector optimization, nonsmooth critical point theory
@article{JCA_2002_9_2_JCA_2002_9_2_a5,
     author = {M. Degiovanni and R. Lucchetti and N. Ribarska},
     title = {Critical {Point} {Theory} for {Vector} {Valued} {Functions}},
     journal = {Journal of convex analysis},
     pages = {415--428},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a5/}
}
TY  - JOUR
AU  - M. Degiovanni
AU  - R. Lucchetti
AU  - N. Ribarska
TI  - Critical Point Theory for Vector Valued Functions
JO  - Journal of convex analysis
PY  - 2002
SP  - 415
EP  - 428
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a5/
ID  - JCA_2002_9_2_JCA_2002_9_2_a5
ER  - 
%0 Journal Article
%A M. Degiovanni
%A R. Lucchetti
%A N. Ribarska
%T Critical Point Theory for Vector Valued Functions
%J Journal of convex analysis
%D 2002
%P 415-428
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a5/
%F JCA_2002_9_2_JCA_2002_9_2_a5
M. Degiovanni; R. Lucchetti; N. Ribarska. Critical Point Theory for Vector Valued Functions. Journal of convex analysis, Tome 9 (2002) no. 2, pp. 415-428. http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a5/