Critical Point Theory for Vector Valued Functions
Journal of convex analysis, Tome 9 (2002) no. 2, pp. 415-428
Cet article a éte moissonné depuis la source Heldermann Verlag
We consider a continuous function defined on a metric space with values in a Banach space endowed with an order cone. In this setting, we provide an extension of min-max techniques, such as the Mountain pass theorem and Ljusternik-Schnirelman theory, without assuming the order cone to have nonempty interior.
Classification :
49J40, 58E05
Mots-clés : Vector optimization, nonsmooth critical point theory
Mots-clés : Vector optimization, nonsmooth critical point theory
@article{JCA_2002_9_2_JCA_2002_9_2_a5,
author = {M. Degiovanni and R. Lucchetti and N. Ribarska},
title = {Critical {Point} {Theory} for {Vector} {Valued} {Functions}},
journal = {Journal of convex analysis},
pages = {415--428},
year = {2002},
volume = {9},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a5/}
}
M. Degiovanni; R. Lucchetti; N. Ribarska. Critical Point Theory for Vector Valued Functions. Journal of convex analysis, Tome 9 (2002) no. 2, pp. 415-428. http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a5/