On Subgradients of Spectral Functions
Journal of convex analysis, Tome 9 (2002) no. 2, pp. 401-414
Cet article a éte moissonné depuis la source Heldermann Verlag
\newcommand{\Or}[1]{\mathbf{O}(#1)} \newcommand{\R}{\mathbb{R}} \newcommand{\Ret}{\overline{\mathbb{R}}} \newcommand{\Sy}[1]{\mathbf{S}(#1)} Let $F:\Sy{m}\rightarrow\Ret$ be a {\em spectral function} (i.e.\ $\Sy{m}$ is the space of $m\times m$ real symmetric matrices, $\forall O\in\Or{m},\forall X\in\Sy{m},\ F(OX{^tO})=F(X)$, where $\Or{m}$ is the orthogonal group and ${^tO}$ is the transpose of $O$). We associate to it the symmetric function $s_F:\R^m\rightarrow\Ret$ by restricting it to the subspace of diagonal matrices. In this work, on the one hand, we give a new, natural proof of the formula which binds the Fr\'echet subgradients of a spectral function $F$ and the Fr\'echet subgradients of the function $s_F$ (identical formulas follow for the subgradients and the horizon subgradients); on the other hand we deduce from the previous results and from convexity arguments that, in the general case, a similar formula holds for the Clarke subgradients.
Classification :
90C31, 15A18, 49K40, 26B05
Mots-clés : Spectral function, eigenvalues, eigenvalue optimization, perturbation theory, Clarke subgradient, nonsmooth analysis
Mots-clés : Spectral function, eigenvalues, eigenvalue optimization, perturbation theory, Clarke subgradient, nonsmooth analysis
@article{JCA_2002_9_2_JCA_2002_9_2_a4,
author = {M. Ciligot-Travain and S. Traore},
title = {On {Subgradients} of {Spectral} {Functions}},
journal = {Journal of convex analysis},
pages = {401--414},
year = {2002},
volume = {9},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a4/}
}
M. Ciligot-Travain; S. Traore. On Subgradients of Spectral Functions. Journal of convex analysis, Tome 9 (2002) no. 2, pp. 401-414. http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a4/