On Subgradients of Spectral Functions
Journal of convex analysis, Tome 9 (2002) no. 2, pp. 401-414.

Voir la notice de l'article provenant de la source Heldermann Verlag

\newcommand{\Or}[1]{\mathbf{O}(#1)} \newcommand{\R}{\mathbb{R}} \newcommand{\Ret}{\overline{\mathbb{R}}} \newcommand{\Sy}[1]{\mathbf{S}(#1)} Let $F:\Sy{m}\rightarrow\Ret$ be a {\em spectral function} (i.e.\ $\Sy{m}$ is the space of $m\times m$ real symmetric matrices, $\forall O\in\Or{m},\forall X\in\Sy{m},\ F(OX{^tO})=F(X)$, where $\Or{m}$ is the orthogonal group and ${^tO}$ is the transpose of $O$). We associate to it the symmetric function $s_F:\R^m\rightarrow\Ret$ by restricting it to the subspace of diagonal matrices. In this work, on the one hand, we give a new, natural proof of the formula which binds the Fr\'echet subgradients of a spectral function $F$ and the Fr\'echet subgradients of the function $s_F$ (identical formulas follow for the subgradients and the horizon subgradients); on the other hand we deduce from the previous results and from convexity arguments that, in the general case, a similar formula holds for the Clarke subgradients.
Classification : 90C31, 15A18, 49K40, 26B05
Mots-clés : Spectral function, eigenvalues, eigenvalue optimization, perturbation theory, Clarke subgradient, nonsmooth analysis
@article{JCA_2002_9_2_JCA_2002_9_2_a4,
     author = {M. Ciligot-Travain and S. Traore},
     title = {On {Subgradients} of {Spectral} {Functions}},
     journal = {Journal of convex analysis},
     pages = {401--414},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a4/}
}
TY  - JOUR
AU  - M. Ciligot-Travain
AU  - S. Traore
TI  - On Subgradients of Spectral Functions
JO  - Journal of convex analysis
PY  - 2002
SP  - 401
EP  - 414
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a4/
ID  - JCA_2002_9_2_JCA_2002_9_2_a4
ER  - 
%0 Journal Article
%A M. Ciligot-Travain
%A S. Traore
%T On Subgradients of Spectral Functions
%J Journal of convex analysis
%D 2002
%P 401-414
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a4/
%F JCA_2002_9_2_JCA_2002_9_2_a4
M. Ciligot-Travain; S. Traore. On Subgradients of Spectral Functions. Journal of convex analysis, Tome 9 (2002) no. 2, pp. 401-414. http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a4/