On the Distance Theorem in Quadratic Optimization
Journal of convex analysis, Tome 9 (2002) no. 2, pp. 693-7.

Voir la notice de l'article provenant de la source Heldermann Verlag

The optimization of convex quadratic forms on Banach spaces is considered. A suitable notion of conditioning under linear perturbations leads to the distance theorem in the free case, thereby extending to the optimization setting the classical Eckart-Young formula: the distance to ill-conditioning equals to the reciprocal of the condition number. Partial results are presented for the linearly constrained case.
Classification : 49K40
Mots-clés : Conditioning, distance theorem, condition number theorem, convex optimization
@article{JCA_2002_9_2_JCA_2002_9_2_a21,
     author = {T. Zolezzi},
     title = {On the {Distance} {Theorem} in {Quadratic} {Optimization}},
     journal = {Journal of convex analysis},
     pages = {693--7},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a21/}
}
TY  - JOUR
AU  - T. Zolezzi
TI  - On the Distance Theorem in Quadratic Optimization
JO  - Journal of convex analysis
PY  - 2002
SP  - 693
EP  - 7
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a21/
ID  - JCA_2002_9_2_JCA_2002_9_2_a21
ER  - 
%0 Journal Article
%A T. Zolezzi
%T On the Distance Theorem in Quadratic Optimization
%J Journal of convex analysis
%D 2002
%P 693-7
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a21/
%F JCA_2002_9_2_JCA_2002_9_2_a21
T. Zolezzi. On the Distance Theorem in Quadratic Optimization. Journal of convex analysis, Tome 9 (2002) no. 2, pp. 693-7. http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a21/