Proximal Points are on the Fast Track
Journal of convex analysis, Tome 9 (2002) no. 2, pp. 563-579.

Voir la notice de l'article provenant de la source Heldermann Verlag

For a convex function, we consider a space decomposition that allows us to identify a subspace on which a Lagrangian related to the function appears to be smooth. We study a particular trajectory, that we call a fast track, on which a certain second-order expansion of the function can be obtained. We show how to obtain such fast tracks for a general class of convex functions having primal-dual gradient structure. Finally, we show that for a point near a minimizer its corresponding proximal point is on the fast track.
Classification : 49K35, 49M27, 65K10, 90C25
Mots-clés : Convex minimization, proximal points, second-order derivatives, VU-decomposition
@article{JCA_2002_9_2_JCA_2002_9_2_a14,
     author = {R. Mifflin and C. Sagastiz\'abal},
     title = {Proximal {Points} are on the {Fast} {Track}},
     journal = {Journal of convex analysis},
     pages = {563--579},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a14/}
}
TY  - JOUR
AU  - R. Mifflin
AU  - C. Sagastizábal
TI  - Proximal Points are on the Fast Track
JO  - Journal of convex analysis
PY  - 2002
SP  - 563
EP  - 579
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a14/
ID  - JCA_2002_9_2_JCA_2002_9_2_a14
ER  - 
%0 Journal Article
%A R. Mifflin
%A C. Sagastizábal
%T Proximal Points are on the Fast Track
%J Journal of convex analysis
%D 2002
%P 563-579
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a14/
%F JCA_2002_9_2_JCA_2002_9_2_a14
R. Mifflin; C. Sagastizábal. Proximal Points are on the Fast Track. Journal of convex analysis, Tome 9 (2002) no. 2, pp. 563-579. http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a14/