Sensitivity Analysis for Parametric Optimal Control of Semilinear Parabolic Equations
Journal of convex analysis, Tome 9 (2002) no. 2, pp. 543-561
Cet article a éte moissonné depuis la source Heldermann Verlag
Parametric optimal control problems for semilinear parabolic equations are considered. Using recent Lipschitz stability results for solutions of such problems, it is shown that, under standard coercivity conditions, the solutions are Bouligand differentiable (in Lp, p finite) functions of the parameter. The differentials are characterized as the solutions of accessory linear-quadratic problems. A uniform second order expansion of the optimal value function is obtained, as a corollary.
Classification :
49K40, 49K20, 49K30
Mots-clés : Parametric optimal control, semilinear parabolic equations, control constraints, Bouligand differentiability of the solutions
Mots-clés : Parametric optimal control, semilinear parabolic equations, control constraints, Bouligand differentiability of the solutions
@article{JCA_2002_9_2_JCA_2002_9_2_a13,
author = {K. Malanowski},
title = {Sensitivity {Analysis} for {Parametric} {Optimal} {Control} of {Semilinear} {Parabolic} {Equations}},
journal = {Journal of convex analysis},
pages = {543--561},
year = {2002},
volume = {9},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a13/}
}
TY - JOUR AU - K. Malanowski TI - Sensitivity Analysis for Parametric Optimal Control of Semilinear Parabolic Equations JO - Journal of convex analysis PY - 2002 SP - 543 EP - 561 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a13/ ID - JCA_2002_9_2_JCA_2002_9_2_a13 ER -
K. Malanowski. Sensitivity Analysis for Parametric Optimal Control of Semilinear Parabolic Equations. Journal of convex analysis, Tome 9 (2002) no. 2, pp. 543-561. http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a13/