Rank Condition and Controllability of Parametric Convex Processes
Journal of convex analysis, Tome 9 (2002) no. 2, pp. 535-542
Cet article a éte moissonné depuis la source Heldermann Verlag
This note is concerned with the controllability of differential inclusions whose right-hand sides are convex processes. More precisely, it relates the controllability of $\dot x(t) \in F(x(t))$ with the controllability of a perturbed version $\dot x(t) \in F_n(x(t))$. The reference (or nominal) convex process $F$ is seen as the ``limit'' of a sequence $\{F_n\}_{n\in \mathbb{N}}$ of approximations.
Classification :
93B05, 47H04, 34A60
Mots-clés : Convex process, differential inclusion, controllability, point spectrum, rank condition, Painlevé-Kuratowski convergence
Mots-clés : Convex process, differential inclusion, controllability, point spectrum, rank condition, Painlevé-Kuratowski convergence
@article{JCA_2002_9_2_JCA_2002_9_2_a12,
author = {P. Lavilledieu and A. Seeger},
title = {Rank {Condition} and {Controllability} of {Parametric} {Convex} {Processes}},
journal = {Journal of convex analysis},
pages = {535--542},
year = {2002},
volume = {9},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a12/}
}
P. Lavilledieu; A. Seeger. Rank Condition and Controllability of Parametric Convex Processes. Journal of convex analysis, Tome 9 (2002) no. 2, pp. 535-542. http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a12/