Formulas for Subdifferentials of Sums of Convex Functions
Journal of convex analysis, Tome 9 (2002) no. 2, pp. 519-533.

Voir la notice de l'article provenant de la source Heldermann Verlag

We discuss various formulas for the subdifferential of the sum of lower semicontinuous convex functions given in terms of certain topological closure operations on the sum of the subdifferentials of each function. We show how the accuracy of the formulas expressed by the closure operations can be improved when additional assumptions on the family of functions are available.
Classification : 52A41, 26E15, 49J52
Mots-clés : Subdifferential, convex function, fuzzy sum rule, qualification condition, nonsmooth analysis
@article{JCA_2002_9_2_JCA_2002_9_2_a11,
     author = {F. Jules and M. Lassonde},
     title = {Formulas for {Subdifferentials} of {Sums} of {Convex} {Functions}},
     journal = {Journal of convex analysis},
     pages = {519--533},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a11/}
}
TY  - JOUR
AU  - F. Jules
AU  - M. Lassonde
TI  - Formulas for Subdifferentials of Sums of Convex Functions
JO  - Journal of convex analysis
PY  - 2002
SP  - 519
EP  - 533
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a11/
ID  - JCA_2002_9_2_JCA_2002_9_2_a11
ER  - 
%0 Journal Article
%A F. Jules
%A M. Lassonde
%T Formulas for Subdifferentials of Sums of Convex Functions
%J Journal of convex analysis
%D 2002
%P 519-533
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a11/
%F JCA_2002_9_2_JCA_2002_9_2_a11
F. Jules; M. Lassonde. Formulas for Subdifferentials of Sums of Convex Functions. Journal of convex analysis, Tome 9 (2002) no. 2, pp. 519-533. http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a11/