Upper Hölder Continuity of Minimal Points
Journal of convex analysis, Tome 9 (2002) no. 2, pp. 327-338
Cet article a éte moissonné depuis la source Heldermann Verlag
We derive criteria for upper Lipschitz/Hölder continuity of the set of minimal points of a given subset A of a normed space Y when A is subjected to perturbations. To this aim we introdue the rate of containment of A, a real-valued function of one real variable, which measures the depart from minimality as a function of the distance from the minimal point set. The main requirement we impose is that for small arguments the rate of containment is a sufficiently fast growing function. The obtained results are applied to parametric vector optimization problems to derive conditions for upper Hölder continuity of the performance multifunction.
Mots-clés :
Minimal points, Hölder multivalued mappings, parametric vector optimization
@article{JCA_2002_9_2_JCA_2002_9_2_a1,
author = {E. M. Bednarczuk},
title = {Upper {H\"older} {Continuity} of {Minimal} {Points}},
journal = {Journal of convex analysis},
pages = {327--338},
year = {2002},
volume = {9},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a1/}
}
E. M. Bednarczuk. Upper Hölder Continuity of Minimal Points. Journal of convex analysis, Tome 9 (2002) no. 2, pp. 327-338. http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a1/