Upper Hölder Continuity of Minimal Points
Journal of convex analysis, Tome 9 (2002) no. 2, pp. 327-338.

Voir la notice de l'article provenant de la source Heldermann Verlag

We derive criteria for upper Lipschitz/Hölder continuity of the set of minimal points of a given subset A of a normed space Y when A is subjected to perturbations. To this aim we introdue the rate of containment of A, a real-valued function of one real variable, which measures the depart from minimality as a function of the distance from the minimal point set. The main requirement we impose is that for small arguments the rate of containment is a sufficiently fast growing function. The obtained results are applied to parametric vector optimization problems to derive conditions for upper Hölder continuity of the performance multifunction.
Mots-clés : Minimal points, Hölder multivalued mappings, parametric vector optimization
@article{JCA_2002_9_2_JCA_2002_9_2_a1,
     author = {E. M. Bednarczuk},
     title = {Upper {H\"older} {Continuity} of {Minimal} {Points}},
     journal = {Journal of convex analysis},
     pages = {327--338},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a1/}
}
TY  - JOUR
AU  - E. M. Bednarczuk
TI  - Upper Hölder Continuity of Minimal Points
JO  - Journal of convex analysis
PY  - 2002
SP  - 327
EP  - 338
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a1/
ID  - JCA_2002_9_2_JCA_2002_9_2_a1
ER  - 
%0 Journal Article
%A E. M. Bednarczuk
%T Upper Hölder Continuity of Minimal Points
%J Journal of convex analysis
%D 2002
%P 327-338
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a1/
%F JCA_2002_9_2_JCA_2002_9_2_a1
E. M. Bednarczuk. Upper Hölder Continuity of Minimal Points. Journal of convex analysis, Tome 9 (2002) no. 2, pp. 327-338. http://geodesic.mathdoc.fr/item/JCA_2002_9_2_JCA_2002_9_2_a1/