The Class of Functionals which can be Represented by a Supremum
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 225-236
Voir la notice de l'article provenant de la source Heldermann Verlag
We give a characterization of all lower semicontinuous functionals on Lm¥ which can be represented in the form m-sup{ f(x, u) : x from A }. We also show by a counterexample that the representation above may fail if the lower semicontinuity condition is dropped.
Classification :
46E30, 28A20, 60B12
Mots-clés : Performance function, multipliers, stability, convex like functions, measurable integrands, richness, integral functional, growth conditions
Mots-clés : Performance function, multipliers, stability, convex like functions, measurable integrands, richness, integral functional, growth conditions
@article{JCA_2002_9_1_JCA_2002_9_1_a9,
author = {E. Acerbi and G. Buttazzo and F. Prinari},
title = {The {Class} of {Functionals} which can be {Represented} by a {Supremum}},
journal = {Journal of convex analysis},
pages = {225--236},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2002},
url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a9/}
}
TY - JOUR AU - E. Acerbi AU - G. Buttazzo AU - F. Prinari TI - The Class of Functionals which can be Represented by a Supremum JO - Journal of convex analysis PY - 2002 SP - 225 EP - 236 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a9/ ID - JCA_2002_9_1_JCA_2002_9_1_a9 ER -
E. Acerbi; G. Buttazzo; F. Prinari. The Class of Functionals which can be Represented by a Supremum. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 225-236. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a9/