The Class of Functionals which can be Represented by a Supremum
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 225-236.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give a characterization of all lower semicontinuous functionals on Lm¥ which can be represented in the form m-sup{ f(x, u) : x from A }. We also show by a counterexample that the representation above may fail if the lower semicontinuity condition is dropped.
Classification : 46E30, 28A20, 60B12
Mots-clés : Performance function, multipliers, stability, convex like functions, measurable integrands, richness, integral functional, growth conditions
@article{JCA_2002_9_1_JCA_2002_9_1_a9,
     author = {E. Acerbi and G. Buttazzo and F. Prinari},
     title = {The {Class} of {Functionals} which can be {Represented} by a {Supremum}},
     journal = {Journal of convex analysis},
     pages = {225--236},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a9/}
}
TY  - JOUR
AU  - E. Acerbi
AU  - G. Buttazzo
AU  - F. Prinari
TI  - The Class of Functionals which can be Represented by a Supremum
JO  - Journal of convex analysis
PY  - 2002
SP  - 225
EP  - 236
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a9/
ID  - JCA_2002_9_1_JCA_2002_9_1_a9
ER  - 
%0 Journal Article
%A E. Acerbi
%A G. Buttazzo
%A F. Prinari
%T The Class of Functionals which can be Represented by a Supremum
%J Journal of convex analysis
%D 2002
%P 225-236
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a9/
%F JCA_2002_9_1_JCA_2002_9_1_a9
E. Acerbi; G. Buttazzo; F. Prinari. The Class of Functionals which can be Represented by a Supremum. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 225-236. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a9/