Another Counterexample to Lower Semicontinuity in Calculus of Variations
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 295-3.

Voir la notice de l'article provenant de la source Heldermann Verlag

An example is shown of a functional $$ F(u)=\int_{I}f(u,u')\,dt $$ which is not lower semicontinuous with respect to $L^1$-convergence. The function $f$ is nonnegative, continuous and strictly convex in the second variable for each $u \in {\mathbb R}^n$.
Classification : 49J45
Mots-clés : Lower semicontinuity, convex integrals, calculus of variations
@article{JCA_2002_9_1_JCA_2002_9_1_a16,
     author = {R. Cerny and J. Mal\'y},
     title = {Another {Counterexample} to {Lower} {Semicontinuity} in {Calculus} of {Variations}},
     journal = {Journal of convex analysis},
     pages = {295--3},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a16/}
}
TY  - JOUR
AU  - R. Cerny
AU  - J. Malý
TI  - Another Counterexample to Lower Semicontinuity in Calculus of Variations
JO  - Journal of convex analysis
PY  - 2002
SP  - 295
EP  - 3
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a16/
ID  - JCA_2002_9_1_JCA_2002_9_1_a16
ER  - 
%0 Journal Article
%A R. Cerny
%A J. Malý
%T Another Counterexample to Lower Semicontinuity in Calculus of Variations
%J Journal of convex analysis
%D 2002
%P 295-3
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a16/
%F JCA_2002_9_1_JCA_2002_9_1_a16
R. Cerny; J. Malý. Another Counterexample to Lower Semicontinuity in Calculus of Variations. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 295-3. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a16/