Another Counterexample to Lower Semicontinuity in Calculus of Variations
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 295-3
Cet article a éte moissonné depuis la source Heldermann Verlag
An example is shown of a functional $$ F(u)=\int_{I}f(u,u')\,dt $$ which is not lower semicontinuous with respect to $L^1$-convergence. The function $f$ is nonnegative, continuous and strictly convex in the second variable for each $u \in {\mathbb R}^n$.
Classification :
49J45
Mots-clés : Lower semicontinuity, convex integrals, calculus of variations
Mots-clés : Lower semicontinuity, convex integrals, calculus of variations
@article{JCA_2002_9_1_JCA_2002_9_1_a16,
author = {R. Cerny and J. Mal\'y},
title = {Another {Counterexample} to {Lower} {Semicontinuity} in {Calculus} of {Variations}},
journal = {Journal of convex analysis},
pages = {295--3},
year = {2002},
volume = {9},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a16/}
}
R. Cerny; J. Malý. Another Counterexample to Lower Semicontinuity in Calculus of Variations. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 295-3. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a16/