Variational Sum and Kato's Conjecture
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 291-294.

Voir la notice de l'article provenant de la source Heldermann Verlag

Our aim in this paper is to compare the variational sum recently introduced by Attouch, Baillon and Théra and the concept of generalized sum. Under appropriate hypotheses, we show that these sums coincide and that the variational sum is a maximal monotone operator.
Classification : 47B44, 47H05, 47A07, 11E05
Mots-clés : Algebraic sum, sum form, variational sum, Kato's condition, maximal monotone operators
@article{JCA_2002_9_1_JCA_2002_9_1_a15,
     author = {T. Diagana},
     title = {Variational {Sum} and {Kato's} {Conjecture}},
     journal = {Journal of convex analysis},
     pages = {291--294},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a15/}
}
TY  - JOUR
AU  - T. Diagana
TI  - Variational Sum and Kato's Conjecture
JO  - Journal of convex analysis
PY  - 2002
SP  - 291
EP  - 294
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a15/
ID  - JCA_2002_9_1_JCA_2002_9_1_a15
ER  - 
%0 Journal Article
%A T. Diagana
%T Variational Sum and Kato's Conjecture
%J Journal of convex analysis
%D 2002
%P 291-294
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a15/
%F JCA_2002_9_1_JCA_2002_9_1_a15
T. Diagana. Variational Sum and Kato's Conjecture. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 291-294. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a15/