An Elementary Derivation of the Generalized Kohn-Strang Relaxation Formulae
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 269-286.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give elementary proofs of the quasiconvex relaxation for the generalized Kohn-Strang functions [see G. Allaire and G. Francfort, Anal. Non-Lin. H. Poincare Inst. 15 (1998) 301--339; G. Allaire and V. Lods, Proc. Royal Soc. Edin. 129A (1999) 439--466] originally studied in an optimal design problem [R. V. Kohn and D. Strang, Comm. Pure Appl. Math. 39 (1986) 113--137, 139--183, 353--377]. We show that by using the translation method, we can recover the relaxations without using the homogenization method and the G-closure theory as in the papers of Allaire [loc. cit.]. Our calculations give further geometric insight of the relaxation and connections to other related areas.
@article{JCA_2002_9_1_JCA_2002_9_1_a13,
     author = {K. Zhang},
     title = {An {Elementary} {Derivation} of the {Generalized} {Kohn-Strang} {Relaxation} {Formulae}},
     journal = {Journal of convex analysis},
     pages = {269--286},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a13/}
}
TY  - JOUR
AU  - K. Zhang
TI  - An Elementary Derivation of the Generalized Kohn-Strang Relaxation Formulae
JO  - Journal of convex analysis
PY  - 2002
SP  - 269
EP  - 286
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a13/
ID  - JCA_2002_9_1_JCA_2002_9_1_a13
ER  - 
%0 Journal Article
%A K. Zhang
%T An Elementary Derivation of the Generalized Kohn-Strang Relaxation Formulae
%J Journal of convex analysis
%D 2002
%P 269-286
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a13/
%F JCA_2002_9_1_JCA_2002_9_1_a13
K. Zhang. An Elementary Derivation of the Generalized Kohn-Strang Relaxation Formulae. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 269-286. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a13/