Coincidence Theorems for Convex Functions
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 259-268.

Voir la notice de l'article provenant de la source Heldermann Verlag

The paper aims at creating a new insight into our perception of convexity by focusing on two fundamental problems: the coincidence of two functions (at least one being convex) upon an information on a dense set and the clarification of the relation between convexity and Fenchel subdifferential. Various results are established into these directions. Several examples are also illustrated showing that some rather unexpected situations can often occur.
Classification : 52A41, 49J52, 26E99
Mots-clés : Convex function, coincidence, subdifferential
@article{JCA_2002_9_1_JCA_2002_9_1_a12,
     author = {J. Benoist and A. Daniilidis},
     title = {Coincidence {Theorems} for {Convex} {Functions}},
     journal = {Journal of convex analysis},
     pages = {259--268},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a12/}
}
TY  - JOUR
AU  - J. Benoist
AU  - A. Daniilidis
TI  - Coincidence Theorems for Convex Functions
JO  - Journal of convex analysis
PY  - 2002
SP  - 259
EP  - 268
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a12/
ID  - JCA_2002_9_1_JCA_2002_9_1_a12
ER  - 
%0 Journal Article
%A J. Benoist
%A A. Daniilidis
%T Coincidence Theorems for Convex Functions
%J Journal of convex analysis
%D 2002
%P 259-268
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a12/
%F JCA_2002_9_1_JCA_2002_9_1_a12
J. Benoist; A. Daniilidis. Coincidence Theorems for Convex Functions. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 259-268. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a12/