Nonlinear Energy Forms and Lipschitz Spaces on the Koch Curve
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 245-258
Voir la notice de l'article provenant de la source Heldermann Verlag
We consider the nonlinear convex energy forms ${\Cal E}^(p)$ on the Koch curve $K$ and we prove that the corresponding domains coincide with the spaces {\it Lip}$_{\alpha, D_f} (p, \infty, K)$. Then we give a precise interpretation of the smoothness index $\alpha$ in terms of the structural constants of the fractal.
Mots-clés :
Nonlinear convex energy forms, fractals, Lipschitz spaces
@article{JCA_2002_9_1_JCA_2002_9_1_a11,
author = {R. Capitanelli and M. R. Lancia},
title = {Nonlinear {Energy} {Forms} and {Lipschitz} {Spaces} on the {Koch} {Curve}},
journal = {Journal of convex analysis},
pages = {245--258},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2002},
url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a11/}
}
TY - JOUR AU - R. Capitanelli AU - M. R. Lancia TI - Nonlinear Energy Forms and Lipschitz Spaces on the Koch Curve JO - Journal of convex analysis PY - 2002 SP - 245 EP - 258 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a11/ ID - JCA_2002_9_1_JCA_2002_9_1_a11 ER -
R. Capitanelli; M. R. Lancia. Nonlinear Energy Forms and Lipschitz Spaces on the Koch Curve. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 245-258. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a11/