Convex Stochastic Duality and the "Biting Lemma"
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 237-244.

Voir la notice de l'article provenant de la source Heldermann Verlag

A standard approach to duality in stochastic optimization problems with constraints in $L_{\infty}$ relies upon the Yosida - Hewitt theorem. We develop an alternative technique which employs only "elementary" means. The technique is based on an $\varepsilon$-regularization of the original problem and on passing to the limit as $\varepsilon \to 0$ with the help of a simple measure-theoretic fact -- the biting lemma.
Classification : 90C15, 51A41, 90C19, 90A16
Mots-clés : Stochastic optimization, convex duality, constraints in L-infinity, stochastic Lagrange multipliers, bounded sets in L-1, biting lemma, Gale's economic model
@article{JCA_2002_9_1_JCA_2002_9_1_a10,
     author = {I. V. Evstigneev and S. D. Fl\r{a}m},
     title = {Convex {Stochastic} {Duality} and the {"Biting} {Lemma"}},
     journal = {Journal of convex analysis},
     pages = {237--244},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a10/}
}
TY  - JOUR
AU  - I. V. Evstigneev
AU  - S. D. Flåm
TI  - Convex Stochastic Duality and the "Biting Lemma"
JO  - Journal of convex analysis
PY  - 2002
SP  - 237
EP  - 244
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a10/
ID  - JCA_2002_9_1_JCA_2002_9_1_a10
ER  - 
%0 Journal Article
%A I. V. Evstigneev
%A S. D. Flåm
%T Convex Stochastic Duality and the "Biting Lemma"
%J Journal of convex analysis
%D 2002
%P 237-244
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a10/
%F JCA_2002_9_1_JCA_2002_9_1_a10
I. V. Evstigneev; S. D. Flåm. Convex Stochastic Duality and the "Biting Lemma". Journal of convex analysis, Tome 9 (2002) no. 1, pp. 237-244. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a10/