Some New Results on the Convergence of Degenerate Elliptic and Parabolic Equations
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 31-54.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider a sequence of matrices ah(x,t) whose minimum eigenvalue is a positive function λh(x) and the maximum one is Lλh(x), λh satisfying a uniform Muckenhoupt's condition. We study G-convergence of the sequence of linear parabolic operators in divergence form associated to these matrices and with coefficient λh in front of the temporal derivative. When the matrices are depending only on the variable x we compare this result with the analogous results for the sequence of elliptic operators and the sequence of standard parabolic operators associated to the same sequence of matrices.
Classification : 35D05, 58J05
Mots-clés : Jumping problems, variational inequalities, nonsmooth critical point theory
@article{JCA_2002_9_1_JCA_2002_9_1_a1,
     author = {F. Paronetto},
     title = {Some {New} {Results} on the {Convergence} of {Degenerate} {Elliptic} and {Parabolic} {Equations}},
     journal = {Journal of convex analysis},
     pages = {31--54},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a1/}
}
TY  - JOUR
AU  - F. Paronetto
TI  - Some New Results on the Convergence of Degenerate Elliptic and Parabolic Equations
JO  - Journal of convex analysis
PY  - 2002
SP  - 31
EP  - 54
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a1/
ID  - JCA_2002_9_1_JCA_2002_9_1_a1
ER  - 
%0 Journal Article
%A F. Paronetto
%T Some New Results on the Convergence of Degenerate Elliptic and Parabolic Equations
%J Journal of convex analysis
%D 2002
%P 31-54
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a1/
%F JCA_2002_9_1_JCA_2002_9_1_a1
F. Paronetto. Some New Results on the Convergence of Degenerate Elliptic and Parabolic Equations. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 31-54. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a1/