Anisotropic Elliptic Equations in Lm
Journal of convex analysis, Tome 8 (2001) no. 2, pp. 417-422.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove the existence of solutions to anisotropic nonlinear elliptic equations with right hand side term in Lm(Ω) and obtain the appropriate function space for the weak solutions. This paper gives a generalization of some results given by L. Boccardo, T. Gallouet and P. Marcellini [Diff. Integral Equations 9 (1996) 209--212] and by L. Boccardo and T. Gallouet [Comm. Partial Diff. Equations 17 (1992) 641--655].
Classification : 35D05, 35D10, 35J65
Mots-clés : Anisotropic elliptic equations, Lm data
@article{JCA_2001_8_2_JCA_2001_8_2_a7,
     author = {F.-Q. Li},
     title = {Anisotropic {Elliptic} {Equations} in {L\protect\textsuperscript{m}}},
     journal = {Journal of convex analysis},
     pages = {417--422},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a7/}
}
TY  - JOUR
AU  - F.-Q. Li
TI  - Anisotropic Elliptic Equations in Lm
JO  - Journal of convex analysis
PY  - 2001
SP  - 417
EP  - 422
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a7/
ID  - JCA_2001_8_2_JCA_2001_8_2_a7
ER  - 
%0 Journal Article
%A F.-Q. Li
%T Anisotropic Elliptic Equations in Lm
%J Journal of convex analysis
%D 2001
%P 417-422
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a7/
%F JCA_2001_8_2_JCA_2001_8_2_a7
F.-Q. Li. Anisotropic Elliptic Equations in Lm. Journal of convex analysis, Tome 8 (2001) no. 2, pp. 417-422. http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a7/