Dynamics of Positive Multiconvex Relations
Journal of convex analysis, Tome 8 (2001) no. 2, pp. 387-4.

Voir la notice de l'article provenant de la source Heldermann Verlag

A notion of multiconvex relation as a union of a finite number of convex relations is introduced. For a particular case of multiconvex process, that is, a union of a finite set of convex processes, we define the notions of the joint and the generalized spectral radius in the same manner as for matrices. We prove the equivalence of these two values if all component processes are positive, bounded, and closed.
Classification : 52A20, 47D20, 58C06, 90C25
Mots-clés : Star-shaped set, convex relation, convex process, rate of growth, generalized spectral radius
@article{JCA_2001_8_2_JCA_2001_8_2_a4,
     author = {A. Vladimirov and A. Rubinov},
     title = {Dynamics of {Positive} {Multiconvex} {Relations}},
     journal = {Journal of convex analysis},
     pages = {387--4},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a4/}
}
TY  - JOUR
AU  - A. Vladimirov
AU  - A. Rubinov
TI  - Dynamics of Positive Multiconvex Relations
JO  - Journal of convex analysis
PY  - 2001
SP  - 387
EP  - 4
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a4/
ID  - JCA_2001_8_2_JCA_2001_8_2_a4
ER  - 
%0 Journal Article
%A A. Vladimirov
%A A. Rubinov
%T Dynamics of Positive Multiconvex Relations
%J Journal of convex analysis
%D 2001
%P 387-4
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a4/
%F JCA_2001_8_2_JCA_2001_8_2_a4
A. Vladimirov; A. Rubinov. Dynamics of Positive Multiconvex Relations. Journal of convex analysis, Tome 8 (2001) no. 2, pp. 387-4. http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a4/