Dynamics of Positive Multiconvex Relations
Journal of convex analysis, Tome 8 (2001) no. 2, pp. 387-4
Cet article a éte moissonné depuis la source Heldermann Verlag
A notion of multiconvex relation as a union of a finite number of convex relations is introduced. For a particular case of multiconvex process, that is, a union of a finite set of convex processes, we define the notions of the joint and the generalized spectral radius in the same manner as for matrices. We prove the equivalence of these two values if all component processes are positive, bounded, and closed.
Classification :
52A20, 47D20, 58C06, 90C25
Mots-clés : Star-shaped set, convex relation, convex process, rate of growth, generalized spectral radius
Mots-clés : Star-shaped set, convex relation, convex process, rate of growth, generalized spectral radius
@article{JCA_2001_8_2_JCA_2001_8_2_a4,
author = {A. Vladimirov and A. Rubinov},
title = {Dynamics of {Positive} {Multiconvex} {Relations}},
journal = {Journal of convex analysis},
pages = {387--4},
year = {2001},
volume = {8},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a4/}
}
A. Vladimirov; A. Rubinov. Dynamics of Positive Multiconvex Relations. Journal of convex analysis, Tome 8 (2001) no. 2, pp. 387-4. http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a4/