Regularity of Minimizers for a Class of Anistropic Free Discontinuity Problems
Journal of convex analysis, Tome 8 (2001) no. 2, pp. 349-368
Cet article a éte moissonné depuis la source Heldermann Verlag
This paper contains existence and regularity results for solutions u from Ω to (Rn)N of a class of free discontinuity problems i. e.: the energy to minimize consists of both a bulk and a surface part. The main feature of the class of problems considered here is that the energy density of the bulk part is supposed to be fully anisotropic with p-growth in the scalar case, n = 1. Similar results for the vectorial case n >1 are obtained for radial energy densities, being anisotropic again with p growth.
@article{JCA_2001_8_2_JCA_2001_8_2_a2,
author = {N. Fusco and G. Mingione and C. Trombetti},
title = {Regularity of {Minimizers} for a {Class} of {Anistropic} {Free} {Discontinuity} {Problems}},
journal = {Journal of convex analysis},
pages = {349--368},
year = {2001},
volume = {8},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a2/}
}
TY - JOUR AU - N. Fusco AU - G. Mingione AU - C. Trombetti TI - Regularity of Minimizers for a Class of Anistropic Free Discontinuity Problems JO - Journal of convex analysis PY - 2001 SP - 349 EP - 368 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a2/ ID - JCA_2001_8_2_JCA_2001_8_2_a2 ER -
N. Fusco; G. Mingione; C. Trombetti. Regularity of Minimizers for a Class of Anistropic Free Discontinuity Problems. Journal of convex analysis, Tome 8 (2001) no. 2, pp. 349-368. http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a2/