Kuhn-Tucker Conditions and Integral Functionals
Journal of convex analysis, Tome 8 (2001) no. 2, pp. 533-554
Voir la notice de l'article provenant de la source Heldermann Verlag
Let X be a decomposable set, h a convex function defined on a finite dimensional vector space. We show that under transversality assumptions the problem of minimization on X: inf {f(x)+h(g(x))} admits Lagrange multipliers. We consider the case where f is a scalar integral functional and g is a vector valued integral functional. These properties are related to growth conditions between integrands.
Classification :
46E30, 28A20, 60B12
Mots-clés : Performance function, multipliers, stability, convex like functions, measurable integrands, richness, integral functional, growth conditions
Mots-clés : Performance function, multipliers, stability, convex like functions, measurable integrands, richness, integral functional, growth conditions
@article{JCA_2001_8_2_JCA_2001_8_2_a13,
author = {A. Bourass and E. Giner},
title = {Kuhn-Tucker {Conditions} and {Integral} {Functionals}},
journal = {Journal of convex analysis},
pages = {533--554},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2001},
url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a13/}
}
A. Bourass; E. Giner. Kuhn-Tucker Conditions and Integral Functionals. Journal of convex analysis, Tome 8 (2001) no. 2, pp. 533-554. http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a13/