Lavrentieff Phenomenon and Non Standard Growth Conditions
Journal of convex analysis, Tome 8 (2001) no. 2, pp. 511-532.

Voir la notice de l'article provenant de la source Heldermann Verlag

The functional $F(u) = \int_B f(x,Du)\,dx$ is considered, where $B$ is the unit ball in $\mathbb{R}^n$, $u$ varies in the set of the locally Lipschitz functions on $\mathbb{R}^n$, and $f$ belongs to a family of integrands containing, as model case, the following one \[ f:(x,z)\in \mathbb{R}^{n}\times \mathbb{R}^{n}\mapsto \frac{|\lt z,x \lt|}{|x|^{n}}% + |z|^{p},\text{ \ \ \ }1 \lt p \lt n. \] The computation of the relaxed functional of $F$ is provided. The formula obtained shows the persistence of the Lavrentieff Phenomenon. Examples of integrands not exhibiting the Lavrentieff Phenomenon are also presented, showing that this phenomenon is not linked only to the non standard growth behaviour of integrands.
@article{JCA_2001_8_2_JCA_2001_8_2_a12,
     author = {G. Cardone and C. D'Apice and U. De Maio},
     title = {Lavrentieff {Phenomenon} and {Non} {Standard} {Growth} {Conditions}},
     journal = {Journal of convex analysis},
     pages = {511--532},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a12/}
}
TY  - JOUR
AU  - G. Cardone
AU  - C. D'Apice
AU  - U. De Maio
TI  - Lavrentieff Phenomenon and Non Standard Growth Conditions
JO  - Journal of convex analysis
PY  - 2001
SP  - 511
EP  - 532
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a12/
ID  - JCA_2001_8_2_JCA_2001_8_2_a12
ER  - 
%0 Journal Article
%A G. Cardone
%A C. D'Apice
%A U. De Maio
%T Lavrentieff Phenomenon and Non Standard Growth Conditions
%J Journal of convex analysis
%D 2001
%P 511-532
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a12/
%F JCA_2001_8_2_JCA_2001_8_2_a12
G. Cardone; C. D'Apice; U. De Maio. Lavrentieff Phenomenon and Non Standard Growth Conditions. Journal of convex analysis, Tome 8 (2001) no. 2, pp. 511-532. http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a12/