Lavrentieff Phenomenon and Non Standard Growth Conditions
Journal of convex analysis, Tome 8 (2001) no. 2, pp. 511-532
Cet article a éte moissonné depuis la source Heldermann Verlag
The functional $F(u) = \int_B f(x,Du)\,dx$ is considered, where $B$ is the unit ball in $\mathbb{R}^n$, $u$ varies in the set of the locally Lipschitz functions on $\mathbb{R}^n$, and $f$ belongs to a family of integrands containing, as model case, the following one \[ f:(x,z)\in \mathbb{R}^{n}\times \mathbb{R}^{n}\mapsto \frac{|\lt z,x \lt|}{|x|^{n}}% + |z|^{p},\text{ \ \ \ }1 \lt p \lt n. \] The computation of the relaxed functional of $F$ is provided. The formula obtained shows the persistence of the Lavrentieff Phenomenon. Examples of integrands not exhibiting the Lavrentieff Phenomenon are also presented, showing that this phenomenon is not linked only to the non standard growth behaviour of integrands.
@article{JCA_2001_8_2_JCA_2001_8_2_a12,
author = {G. Cardone and C. D'Apice and U. De Maio},
title = {Lavrentieff {Phenomenon} and {Non} {Standard} {Growth} {Conditions}},
journal = {Journal of convex analysis},
pages = {511--532},
year = {2001},
volume = {8},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a12/}
}
TY - JOUR AU - G. Cardone AU - C. D'Apice AU - U. De Maio TI - Lavrentieff Phenomenon and Non Standard Growth Conditions JO - Journal of convex analysis PY - 2001 SP - 511 EP - 532 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a12/ ID - JCA_2001_8_2_JCA_2001_8_2_a12 ER -
G. Cardone; C. D'Apice; U. De Maio. Lavrentieff Phenomenon and Non Standard Growth Conditions. Journal of convex analysis, Tome 8 (2001) no. 2, pp. 511-532. http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a12/