Invariant Convex Sets in Operator Lie Algebras
Journal of convex analysis, Tome 8 (2001) no. 2, pp. 291-326.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study the closed convex subsets of Lie algebras of bounded linear operators on a Hilbert space that are invariant under the corresponding group of unitary operators. We will give a family fj of convex functions such, that for each closed convex invariant set C there are real numbers cj satisfying C = { X : fj(X) ≤ cj for all j }.
@article{JCA_2001_8_2_JCA_2001_8_2_a0,
     author = {A. Neumann},
     title = {Invariant {Convex} {Sets} in {Operator} {Lie} {Algebras}},
     journal = {Journal of convex analysis},
     pages = {291--326},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a0/}
}
TY  - JOUR
AU  - A. Neumann
TI  - Invariant Convex Sets in Operator Lie Algebras
JO  - Journal of convex analysis
PY  - 2001
SP  - 291
EP  - 326
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a0/
ID  - JCA_2001_8_2_JCA_2001_8_2_a0
ER  - 
%0 Journal Article
%A A. Neumann
%T Invariant Convex Sets in Operator Lie Algebras
%J Journal of convex analysis
%D 2001
%P 291-326
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a0/
%F JCA_2001_8_2_JCA_2001_8_2_a0
A. Neumann. Invariant Convex Sets in Operator Lie Algebras. Journal of convex analysis, Tome 8 (2001) no. 2, pp. 291-326. http://geodesic.mathdoc.fr/item/JCA_2001_8_2_JCA_2001_8_2_a0/