Self Dual Operators on Convex Functionals; Geometric Mean and Square Root of Convex Functionals
Journal of convex analysis, Tome 8 (2001) no. 1, pp. 223-24
Voir la notice de l'article provenant de la source Heldermann Verlag
Let Conv(X) be the set of the convex functionals defined on a linear space X, with values in the union of R and the point of positive infinity. We give an extension of the notion of duality for (convex) functionals to mappings which operate from Conv(X) × Conv(X) into Conv(X). Afterwards, we present an algorithm which associates, under convenient assumptions, a self-dual operator to a given operator and its dual. Finally, we give some examples which prove the generality and interest of our approach.
@article{JCA_2001_8_1_JCA_2001_8_1_a9,
author = {M. Atteia and M. Ra{\"\i}ssouli},
title = {Self {Dual} {Operators} on {Convex} {Functionals;} {Geometric} {Mean} and {Square} {Root} of {Convex} {Functionals}},
journal = {Journal of convex analysis},
pages = {223--24},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2001},
url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a9/}
}
TY - JOUR AU - M. Atteia AU - M. Raïssouli TI - Self Dual Operators on Convex Functionals; Geometric Mean and Square Root of Convex Functionals JO - Journal of convex analysis PY - 2001 SP - 223 EP - 24 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a9/ ID - JCA_2001_8_1_JCA_2001_8_1_a9 ER -
%0 Journal Article %A M. Atteia %A M. Raïssouli %T Self Dual Operators on Convex Functionals; Geometric Mean and Square Root of Convex Functionals %J Journal of convex analysis %D 2001 %P 223-24 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a9/ %F JCA_2001_8_1_JCA_2001_8_1_a9
M. Atteia; M. Raïssouli. Self Dual Operators on Convex Functionals; Geometric Mean and Square Root of Convex Functionals. Journal of convex analysis, Tome 8 (2001) no. 1, pp. 223-24. http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a9/