A Characterization of Convex and Semicoercive Functionals
Journal of convex analysis, Tome 8 (2001) no. 1, pp. 127-148
Cet article a éte moissonné depuis la source Heldermann Verlag
We prove that every proper convex and lower semicontinuous functional Φ defined on a real reflexive Banach space X is semicoercive if and only if every small uniform perturbation of Φ attains its minimum value on X.
Classification :
49J40
Mots-clés : Convex analysis, barrier cone, support functional, recession analysis, semicoercive functional
Mots-clés : Convex analysis, barrier cone, support functional, recession analysis, semicoercive functional
@article{JCA_2001_8_1_JCA_2001_8_1_a5,
author = {S. Adly and E. Ernst and M. Th\'era},
title = {A {Characterization} of {Convex} and {Semicoercive} {Functionals}},
journal = {Journal of convex analysis},
pages = {127--148},
year = {2001},
volume = {8},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a5/}
}
S. Adly; E. Ernst; M. Théra. A Characterization of Convex and Semicoercive Functionals. Journal of convex analysis, Tome 8 (2001) no. 1, pp. 127-148. http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a5/