Vector Variational Principles; ε-Efficiency and Scalar Stationarity
Journal of convex analysis, Tome 8 (2001) no. 1, pp. 71-86.

Voir la notice de l'article provenant de la source Heldermann Verlag

The aim of this paper is to present several versions of vector variational principles related to some type of metrically consistent ε-efficiency and to the approximate necessary first order efficiency condition.
Mots-clés : Vector optimization, multicriteria optimization, epsilon-efficiency, stationary sequences, Kuhn-Tucker-sequences, minimizing sequences, Pareto optimizing sequences, weakly efficient sequences, convex analysis, variational analysis, Ekeland variational pri
@article{JCA_2001_8_1_JCA_2001_8_1_a2,
     author = {S. Bolintin\'eanu},
     title = {Vector {Variational} {Principles;} {\ensuremath{\varepsilon}-Efficiency} and {Scalar} {Stationarity}},
     journal = {Journal of convex analysis},
     pages = {71--86},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a2/}
}
TY  - JOUR
AU  - S. Bolintinéanu
TI  - Vector Variational Principles; ε-Efficiency and Scalar Stationarity
JO  - Journal of convex analysis
PY  - 2001
SP  - 71
EP  - 86
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a2/
ID  - JCA_2001_8_1_JCA_2001_8_1_a2
ER  - 
%0 Journal Article
%A S. Bolintinéanu
%T Vector Variational Principles; ε-Efficiency and Scalar Stationarity
%J Journal of convex analysis
%D 2001
%P 71-86
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a2/
%F JCA_2001_8_1_JCA_2001_8_1_a2
S. Bolintinéanu. Vector Variational Principles; ε-Efficiency and Scalar Stationarity. Journal of convex analysis, Tome 8 (2001) no. 1, pp. 71-86. http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a2/