Vector Variational Principles; ε-Efficiency and Scalar Stationarity
Journal of convex analysis, Tome 8 (2001) no. 1, pp. 71-86
Voir la notice de l'article provenant de la source Heldermann Verlag
The aim of this paper is to present several versions of vector variational principles related to some type of metrically consistent ε-efficiency and to the approximate necessary first order efficiency condition.
Mots-clés :
Vector optimization, multicriteria optimization, epsilon-efficiency, stationary sequences, Kuhn-Tucker-sequences, minimizing sequences, Pareto optimizing sequences, weakly efficient sequences, convex analysis, variational analysis, Ekeland variational pri
@article{JCA_2001_8_1_JCA_2001_8_1_a2,
author = {S. Bolintin\'eanu},
title = {Vector {Variational} {Principles;} {\ensuremath{\varepsilon}-Efficiency} and {Scalar} {Stationarity}},
journal = {Journal of convex analysis},
pages = {71--86},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2001},
url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a2/}
}
S. Bolintinéanu. Vector Variational Principles; ε-Efficiency and Scalar Stationarity. Journal of convex analysis, Tome 8 (2001) no. 1, pp. 71-86. http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a2/